A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing mobility patterns of forest goers in southern Lao PDR using GPS loggers. | LitMetric

Background: In the Greater Mekong Subregion (GMS), forest-going populations are considered high-risk populations for malaria and are increasingly targeted by national control programmes' elimination efforts. A better understanding of forest-going populations' mobility patterns and risk associated with specific types of forest-going trips is necessary for countries in the GMS to achieve their objective of eliminating malaria by 2030.

Methods: Between March and November 2018, as part of a focal test and treat intervention (FTAT), 2,904 forest-goers were recruited in southern Lao PDR. A subset of forest-goers carried an "i-Got-U" GPS logger for roughly 2 months, configured to collect GPS coordinates every 15 to 30 min. The utilization distribution (UD) surface around each GPS trajectory was used to extract trips to the forest and forest-fringes. Trips with shared mobility characteristics in terms of duration, timing and forest penetration were identified by a hierarchical clustering algorithm. Then, clusters of trips with increased exposure to dominant malaria vectors in the region were further classified as high-risk. Finally, gradient boosting trees were used to assess which of the forest-goers' socio-demographic and behavioural characteristics best predicted their likelihood to engage in such high-risk trips.

Results: A total of 122 forest-goers accepted carrying a GPS logger resulting in the collection of 803 trips to the forest or forest-fringes. Six clusters of trips emerged, helping to classify 385 (48%) trips with increased exposure to malaria vectors based on high forest penetration and whether the trip happened overnight. Age, outdoor sleeping structures and number of children were the best predictors of forest-goers' probability of engaging in high-risk trips. The probability of engaging in high-risk trips was high (~ 33%) in all strata of the forest-going population.

Conclusion: This study characterized the heterogeneity within the mobility patterns of forest-goers and attempted to further segment their role in malaria transmission in southern Lao People's Democratic Republic (PDR). National control programmes across the region can leverage these results to tailor their interventions and messaging to high-risk populations and accelerate malaria elimination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893532PMC
http://dx.doi.org/10.1186/s12936-023-04468-8DOI Listing

Publication Analysis

Top Keywords

mobility patterns
12
southern lao
12
trips
9
lao pdr
8
high-risk populations
8
national control
8
gps logger
8
trips forest
8
forest forest-fringes
8
forest penetration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!