Background: Sodium-glucose co-transporters (SGLT) inhibitors (SGLT2i) showed many beneficial effects at the cardiovascular level. Several mechanisms of action have been identified. However, no data on their capability to act via epigenetic mechanisms were reported. Therefore, this study aimed to investigate the ability of SGLT2 inhibitors (SGLT2i) to induce protective effects at the cardiovascular level by acting on DNA methylation.

Methods: To better clarify this issue, the effects of empagliflozin (EMPA) on hyperglycemia-induced epigenetic modifications were evaluated in human ventricular cardiac myoblasts AC16 exposed to hyperglycemia for 7 days. Therefore, the effects of EMPA on DNA methylation of NF-κB, SOD2, and IL-6 genes in AC16 exposed to high glucose were analyzed by pyrosequencing-based methylation analysis. Modifications of gene expression and DNA methylation of NF-κB and SOD2 were confirmed in response to a transient SGLT2 gene silencing in the same cellular model. Moreover, chromatin immunoprecipitation followed by quantitative PCR was performed to evaluate the occupancy of TET2 across the investigated regions of NF-κB and SOD2 promoters.

Results: Seven days of high glucose treatment induced significant demethylation in the promoter regions of NF-kB and SOD2 with a consequent high level in mRNA expression of both genes. The observed DNA demethylation was mediated by increased TET2 expression and binding to the CpGs island in the promoter regions of analyzed genes. Indeed, EMPA prevented the HG-induced demethylation changes by reducing TET2 binding to the investigated promoter region and counteracted the altered gene expression. The transient SGLT2 gene silencing prevented the DNA demethylation observed in promoter regions, thus suggesting a role of SGLT2 as a potential target of the anti-inflammatory and antioxidant effect of EMPA in cardiomyocytes.

Conclusions: In conclusion, our results demonstrated that EMPA, mainly acting on SGLT2, prevented DNA methylation changes induced by high glucose and provided evidence of a new mechanism by which SGLT2i can exert cardio-beneficial effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896756PMC
http://dx.doi.org/10.1186/s12933-023-01754-2DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
nf-κb sod2
12
high glucose
12
promoter regions
12
epigenetic modifications
8
role sglt2
8
sglt2 inhibitors
8
inhibitors sglt2i
8
effects cardiovascular
8
cardiovascular level
8

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Aim: We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.

Methods: We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK ( = 796; White) and the maternal and infant cohort study (MICS) in Taiwan ( = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.

View Article and Find Full Text PDF

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!