AI Article Synopsis

  • Pseudomonas aeruginosa is more commonly found in immunosuppressed and hospitalized individuals, leading to higher infection risks and complications like antibiotic-associated diarrhea, prompting researchers to explore marine prebiotic fucoidans as a potential treatment.
  • The study employed various methods, including proteomic analysis and sequencing, confirming that fucose-rich fucoidans can effectively inhibit the binding of P. aeruginosa to intestinal mucins and promote healthier gut microbiota.
  • In a mouse model, dietary fucoidans significantly reduced P. aeruginosa colonization and encouraged the growth of beneficial gut bacteria, highlighting their potential for preventing infections in vulnerable populations.

Article Abstract

Background: Pseudomonas aeruginosa intestinal carriage rates are significantly higher in immunosuppressed individuals and hospitalized patients who therefore have increased risk of infections and antibiotic-associated diarrhea. To combat intestinal dysbiosis and decolonize P. aeruginosa from gastrointestinal tract, we investigated the anti-adherence and gut microbiota modulation properties of marine prebiotic fucoidans.

Methods: Proteomic analysis of culture supernatant was performed by LC-MS/MS. Using lectin-based enzyme-linked immunosorbent assay, hemagglutinin domain interaction and inhibition with biomolecules were studied. We investigated the role of nutritional grade fucoidans in a mouse model and used 16S ribosomal RNA sequencing to examine fecal microbiota composition.

Results: Analysis of culture supernatant proteins indicated the secretion of two-partner secretion (TPS) family proteins, including TpsA1/CdiA2 and TpsA2/CdiA1. Lectin like activity at the N-terminal of TpsA due to a conserved hemagglutinin domain (Pfam identifier [ID] PF05860) mediates binding to mucins that carry multiple fucosylated glycans. Fucose-rich sulfated polysaccharides (fucoidans) and sulfated dextrans were found to be potent inhibitors of the recombinant N-terminal hemagglutinin domain of TpsA (TpsA-NT-HAD) binding to mucins. In a mouse model, antibiotic-induced dysbiosis was essential for P. aeruginosa gastrointestinal colonization. After prophylactic oral fucoidans supplementation, a higher proportion (60%) of the mice were decolonized over time and resisted re-colonization, this was associated with remarkable expansion of Bacteroides (post-infection day-3 abundance, 29-50%) and consequential reductions in bloom of Enterobacteriaceae and Enterococcaceae populations. In the non-supplemented group, Parabacteroides mediated recovery from dysbiosis but failed to decolonize P. aeruginosa.

Conclusions: Supplementing diet with marine prebiotic fucoidans can mediate earlier recovery from dysbiosis and decolonization of P. aeruginosa from gut by inhibiting secreted virulence factor (TpsA/CdiA) interaction with mucins and promoting the growth of beneficial Bacteroides population. We suggest the prophylactic use of nutritional grade fucoidans to decolonize P. aeruginosa from gastrointestinal tract of at-risk individuals to prevent infection and transmission of colonizing P. aeruginosa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896862PMC
http://dx.doi.org/10.1186/s12929-023-00902-wDOI Listing

Publication Analysis

Top Keywords

aeruginosa gastrointestinal
12
hemagglutinin domain
12
pseudomonas aeruginosa
8
aeruginosa gut
8
gut inhibiting
8
inhibiting secreted
8
secreted virulence
8
virulence factor
8
bacteroides population
8
decolonize aeruginosa
8

Similar Publications

Pollution profiles, pathogenicity, and toxicity of bioaerosols in the atmospheric environment of urban general hospital in China.

Environ Pollut

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.

View Article and Find Full Text PDF

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

Tropical fruit-derived Lactiplantibacillus as potential probiotic and antifungal agents against Fusarium oxysporum.

Sci Rep

January 2025

Molecular Mycotoxicology Lab, Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570 006, India.

Fifty-five lactic acid bacteria (LAB) were isolated from seven selected tropical fruits, with Solanum nigrum exhibiting the highest LAB prevalence and Couroupita guianenis and Musa fruits showing the lowest counts. Two strains isolated from Ficus racemosa demonstrated significant antifungal activity against Fusarium oxysporum. 16S rDNA sequencing identified these strains as Lactiplantibacillus plantarum MYSVCF3 and Lpb.

View Article and Find Full Text PDF

Patients with selective IgA deficiency could have various clinical presentations ranging from asymptomatic to severe respiratory or gastrointestinal tract infection, as well as autoimmune disease and allergic reactions. Selective IgA deficiency is relatively common in Caucasians, but it is rare in the Asian population, meaning it could be easily missed in the clinic. In this study, we report a 26-year-old man with a history of asthma and nephrotic syndrome.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium capable of causing severe infections in immunocompromised patients such as those suffering from chronic kidney disease (CKD). This study aimed to determine the resistance profile of Pseudomonas aeruginosa, and the prevalence of extended-spectrum β-lactamase (ESBL) resistance genes in patients with chronic kidney disease.

Methods: The prevalence of Pseudomonas aeruginosa was investigated in 458 patients, including 197 CKD patients and 261 patients suffering from gastrointestinal infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!