The thalamus is the main gateway for sensory information from the periphery to the mammalian cerebral cortex. A major conundrum has been the discrepancy between the thalamus's central role as the primary feedforward projection system into the neocortex and the sparseness of thalamocortical synapses. Here we use new methods, combining genetic tools and scalable tissue expansion microscopy for whole-cell synaptic mapping, revealing the number, density and size of thalamic versus cortical excitatory synapses onto individual layer 2/3 (L2/3) pyramidal cells (PCs) of the mouse primary visual cortex. We find that thalamic inputs are not only sparse, but remarkably heterogeneous in number and density across individual dendrites and neurons. Most surprising, despite their sparseness, thalamic synapses onto L2/3 PCs are smaller than their cortical counterparts. Incorporating these findings into fine-scale, anatomically faithful biophysical models of L2/3 PCs reveals how individual neurons with sparse and weak thalamocortical synapses, embedded in small heterogeneous neuronal ensembles, may reliably 'read out' visually driven thalamic input.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-022-01253-9 | DOI Listing |
Cogn Neurodyn
December 2024
School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China.
The apical dendrites of human L2/3 pyramidal neurons are capable of performing XOR computation by modulating the amplitude of dendritic calcium action potentials (dCaAPs) mediated by calcium ions. What influences this particular function? There is still no answer to this question. In this study, we employed a rational and feasible reduction method to successfully derive simplified models of human L2/3 pyramidal neurons while preserving their detailed functional properties.
View Article and Find Full Text PDFPLoS One
December 2024
Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.
View Article and Find Full Text PDFJ Neurosci
November 2024
Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva, Switzerland 1211
Sensory experience and learning are thought to be associated with plasticity of neocortical circuits. Repetitive sensory stimulation can induce long-term potentiation (LTP) of cortical excitatory synapses in anesthetized mice; however, it is unclear if these phenomena are associated with sustained changes in activity during wakefulness. Here we used time-lapse, calcium imaging of layer (L) 2/3 neurons in the primary somatosensory cortex (S1), in awake male mice, to assess the effects of a bout of rhythmic whisker stimulation (RWS) at a frequency by which rodents sample objects.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
bioRxiv
September 2024
Dept. of Psychology, University of Michigan, Ann Arbor, MI 48109.
The granular retrosplenial cortex (RSG) supports key functions ranging from memory consolidation to spatial navigation. The mouse RSG contains several cell types that are remarkably distinct from those found in other cortical regions. This includes the physiologically and transcriptomically unique low rheobase neuron that is the dominant cell-type in RSG layers 2/3 (L2/3 LR), as well as the similarly exclusive pyramidal cells that comprise much of RSG layer 5a (L5a RSG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!