We report the visible light-mediated copper-catalyzed vicinal difunctionalization of olefins utilizing bromonitroalkanes as ATRA reagents. This protocol is characterized by high yields and fast reaction times under environmentally benign reaction conditions with exceptional scope, allowing the rapid functionalization of both activated and unactivated olefins. Moreover, late-stage functionnalization of biologically active molecules and upscaling to gram quantities is demonstrated, which offers manifold possibilities for further transformations, e.g. access to nitro- and aminocyclopropanes. Besides the synthetic utility of the title transformation, this study undergirds the exclusive role of copper in photoredox catalysis showing its ability to stabilize and interact with radical intermediates in its coordination sphere. EPR studies suggest that such interactions can even outperform a highly favorable cyclization of transient to persistent radicals contrasting iridium-based photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202219086DOI Listing

Publication Analysis

Top Keywords

copperi photocatalyzed
4
photocatalyzed bromonitroalkylation
4
bromonitroalkylation olefins
4
olefins evidence
4
evidence highly
4
highly efficient
4
efficient inner-sphere
4
inner-sphere pathways
4
pathways report
4
report visible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!