Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393409PMC
http://dx.doi.org/10.1093/brain/awad032DOI Listing

Publication Analysis

Top Keywords

pathological tau
20
tau
19
tau/rna complexes
12
alzheimer's disease
8
detergent-insoluble tau
8
tauopathy disorders
8
tau lesions
8
tau/rna
8
tau/rna interactions
8
tau/rna binding
8

Similar Publications

Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.

View Article and Find Full Text PDF

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles.

J Clin Periodontol

December 2024

Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.

Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.

View Article and Find Full Text PDF

Therapeutic implications of necroptosis activation in Alzheimer´s disease.

Alzheimers Res Ther

December 2024

Laboratory of Neurodegenerative Diseases, Center for Biomedicine, Universidad Mayor, Temuco, Chile.

In recent years, a growing body of research has unveiled the involvement of the necroptosis pathway in the pathogenesis of Alzheimer's disease (AD). This evidence has shed light on the mechanisms underlying neuronal death in AD, positioning necroptosis at the forefront as a potential target for therapeutic intervention. This review provides an update on the current knowledge on this emerging, yet rapidly advancing topic, encompassing all published studies that present supporting proof of the role of the necroptosis pathway in the neurodegenerative processes of AD.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive neurodegenerative disease affecting memory, language, and thinking with no curative treatment. Symptoms appear gradually, and pathological brain changes may occur twenty years before the physical and psychological signs, pointing to the urgent development of preventive interventions. Physical activity has been investigated as a preventive tool to defeat the main biological features of AD: pathological amyloid protein plaques, tau tangles, myelin degeneration, and iron deposits in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!