Analytical solution for acoustic radiation force on a sphere near a planar boundary.

J Acoust Soc Am

Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713-8029, USA.

Published: January 2023

Acoustic radiation force on a sphere in an inviscid fluid near a planar boundary, which may be rigid or pressure release, is calculated using spherical wave functions to expand the total pressure field. The condition at the boundary is satisfied with the addition of a reflected wave and an image sphere. The total pressure field, which is exact in the linear approximation, is composed of the incident field, the reflected field, and the scattered fields due to the physical sphere and the image sphere. The expansion coefficients for the pressure field are used to evaluate the acoustic radiation force on the sphere using a known analytical expression obtained from integration of the radiation stress tensor. Calculations illustrate the influence of multiple scattering effects on the radiation force acting on the sphere. The model applies to compressible and elastic spheres and for any incident field structure. An approximation is introduced that extends the analytical model to other types of interfaces, including a fluid-fluid interface. The analytical model is validated by comparisons with an independent finite element model.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0016885DOI Listing

Publication Analysis

Top Keywords

radiation force
16
acoustic radiation
12
force sphere
12
pressure field
12
planar boundary
8
total pressure
8
image sphere
8
incident field
8
analytical model
8
sphere
7

Similar Publications

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

Introduction: Radiation therapy plays an important role in the treatment of localized breast cancer. Hypofractionated (HF) radiation therapy has emerged as a promising alternative to conventional fractionation (CF) schedules, offering comparable efficacy with reduced treatment duration and costs. However, concerns remain regarding its safety and rate of toxicity, particularly in patients undergoing mastectomy with breast reconstruction.

View Article and Find Full Text PDF

Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures.

Materials (Basel)

December 2024

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.

Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.

View Article and Find Full Text PDF

: This study compares system-reported organ doses (ODs) to manually calculated mean glandular doses (MGDs) in mammography across multiple centers and manufacturers in Dubai. : A retrospective study of 2754 anonymized mammograms from six clinics in Dubai were randomly retrieved from a central dose survey database. Organ doses were documented along with other dosimetry information like kVp, mAs, filter, target, compression force, and breast thickness.

View Article and Find Full Text PDF

Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!