Maturation of pathogenic biofilms induces enhanced resistance against gaseous chlorine dioxide.

Lett Appl Microbiol

Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439, Republic of Korea.

Published: March 2023

Biofilms are surface-associated microbial clusters embedded in extracellular polymeric substances. Biofilms formed on food-contact surfaces create challenges for the food industry due to their increased tolerance to antimicrobial agents and disinfectants. This study aimed to evaluate the effect of the biofilm maturation period on their resistance to gaseous ClO2. Listeria monocytogenes, Salmonellaserotype Typhimurium, and Escherichia coli O157:H7 biofilms formed on stainless steel (SS) and high-density polyethylene (HDPE) surfaces were investigated. The total cell mass and protein content significantly increased (P < .05) between the second and the fifth day of maturation, and the biofilms' resistance to gaseous ClO2 increased as they matured. Generally, the cell counts of 0-day-old L. monocytogenes, Salm. Typhimurium, and E. coli O157:H7 biofilms on SS and HDPE reduced below the detection limit (0.48 log CFU/cm2) within 5 min. The cell counts of 2-day-old biofilms of the three pathogens were reduced by 6.22 to over 7.52 log, while those of 5-day-old biofilms were reduced by 3.64 to over 6.34 log after 20 min of treatment with 30 ppmv of gaseous ClO2. Therefore, as resistance increases with biofilm maturation, daily gaseous ClO2 treatment would maximize the antimicrobial efficacy of the cleaning strategy against biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/lambio/ovad016DOI Listing

Publication Analysis

Top Keywords

resistance gaseous
8
biofilms formed
8
maturation pathogenic
4
biofilms
4
pathogenic biofilms
4
biofilms induces
4
induces enhanced
4
enhanced resistance
4
gaseous chlorine
4
chlorine dioxide
4

Similar Publications

Control of HS synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.

View Article and Find Full Text PDF

The Antimicrobial Effects of Nitric Oxide: A Narrative Review.

Nitric Oxide

January 2025

Harvard Medical School, Boston, MA, USA; Division of Pediatric Critical Care Medicine, Massachusetts General Hospital for Children, Boston, MA, USA. Electronic address:

Nitric oxide (NO) is a versatile endogenous molecule with multiple physiological roles, including neurotransmission, vasodilation, and immune regulation. As part of the immune response, NO exerts antimicrobial effects by producing reactive nitrogen species (RNS). These RNS combat pathogens via mechanisms such as DNA deamination, S-nitrosylation of thiol groups, and lipid peroxidation, leading to disruptions in microbial cell membranes and vital protein functions.

View Article and Find Full Text PDF

Bactericidal efficacy of low dose gaseous ozone against clinically relevant multidrug-resistant bacteria.

Front Microbiol

December 2024

Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA, United States.

Introduction: Healthcare-associated infections (HAIs) pose a significant challenge in acute care hospitals, particularly in intensive care units, due to persistent environmental contamination despite existing disinfection protocols and manual cleaning methods. Current disinfection methods are labor-intensive and often ineffective against multidrug-resistant (MDR) pathogens, highlighting the need for new, automated, hands-free approaches.

Methods: This study evaluates the bactericidal efficacy of low concentrations of gaseous ozone (5 ppm) against clinically relevant and often MDR bacteria under various concentrations, contact times, temperatures, and environmental conditions.

View Article and Find Full Text PDF

Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes.

View Article and Find Full Text PDF

An overview of phenylsulfonylfuroxan-based nitric oxide donors for cancer treatment.

Bioorg Chem

January 2025

Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:

Nitric oxide (NO) is a gaseous molecule integral to numerous physiological processes, including tumor modulation, cardiovascular regulation, and systemic physiological functions. Its dual role in promoting and inhibiting tumor growth makes it a focal point of contemporary oncological research. Phenylsulfonylfuroxan, a classical NO donor, has been shown to significantly elevate NO levels, thereby inducing apoptosis and inhibiting proliferation and metastasis in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!