Preclinical developments in the delivery of protein antigens for vaccination.

Expert Opin Drug Deliv

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Published: March 2023

Introduction: Vaccine technology has constantly advanced since its origin. One of these advancements is where purified parts of a pathogen are used rather than the whole pathogen. Subunit vaccines have no chance of causing disease; however, alone these antigens are often poorly immunogenic. Therefore, they can be paired with immune stimulating adjuvants. Further, subunits can be combined with delivery strategies such as nano/microparticles to enrich their delivery to organs and cells of interest as well as protect them from in vivo degradation. Here, we seek to highlight some of the more promising delivery strategies for protein antigens.

Areas Covered: We present a brief description of the different types of vaccines, clinically relevant examples, and their disadvantages when compared to subunit vaccines. Also, specific preclinical examples of delivery strategies for protein antigens.

Expert Opinion: Subunit vaccines provide optimal safety given that they have no risk of causing disease; however, they are often not immunogenic enough on their own to provide protection. Advanced delivery systems are a promising avenue to increase the immunogenicity of subunit vaccines, but scalability and stability can be improved. Further, more research is warranted on systems that promote a mucosal immune response to provide better protection against infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992317PMC
http://dx.doi.org/10.1080/17425247.2023.2176844DOI Listing

Publication Analysis

Top Keywords

subunit vaccines
16
delivery strategies
12
causing disease
8
strategies protein
8
delivery
6
vaccines
5
preclinical developments
4
developments delivery
4
delivery protein
4
protein antigens
4

Similar Publications

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!