A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session62to4fmc69trrulqpcdpnm75i3fad458): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Infrared neural stimulation in human cerebral cortex. | LitMetric

Infrared neural stimulation in human cerebral cortex.

Brain Stimul

Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China. Electronic address:

Published: May 2023

AI Article Synopsis

  • Modulation of brain circuits through electrical stimulation has advanced treatments for diseases like Parkinson's, and Infrared Neural Stimulation (INS) shows promise for selectively targeting brain areas in humans.
  • In a study involving five epilepsy patients, INS was tested during surgery to assess its effectiveness and potential tissue damage in the human cerebral cortex.
  • Results indicated that INS can induce focused neuronal responses in humans similar to those observed in monkeys, with a degree of intensity dependence, while providing insights into safety thresholds for tissue damage.

Article Abstract

Background: Modulation of brain circuits by electrical stimulation has led to exciting and powerful therapies for diseases such as Parkinson's. Because human brain organization is based in mesoscale (millimeter-scale) functional nodes, having a method that can selectively target such nodes could enable more precise, functionally specific stimulation therapies. Infrared Neural Stimulation (INS) is an emerging stimulation technology that stimulates neural tissue via delivery of tiny heat pulses. In nonhuman primates, this optical method provides focal intensity-dependent stimulation of the brain without tissue damage. However, whether INS application to the human central nervous system (CNS) is similarly effective is unknown.

Objective: To examine the effectiveness of INS on human cerebral cortex in intraoperative setting and to evaluate INS damage threshholds.

Methods: Five epileptic subjects undergoing standard lobectomy for epilepsy consented to this study. Cortical response to INS was assessed by intrinsic signal optical imaging (OI, a method that detects changes in tissue reflectance due to neuronal activity). A custom integrated INS and OI system was developed specifically for short-duration INS and OI acquisition during surgical procedures. Single pulse trains of INS with intensities from 0.2 to 0.8 J/cm were delivered to the somatosensory cortex and responses were recorded via optical imaging. Following tissue resection, histological analysis was conducted to evaluate damage threshholds.

Results: As assessed by OI, and similar to results in monkeys, INS induced responses in human cortex were highly focal (millimeter sized) and led to relative suppression of nearby cortical sites. Intensity dependence was observed at both stimulated and functionally connected sites. Histological analysis of INS-stimulated human cortical tissue provided damage threshold estimates.

Conclusion: This is the first study demonstrating application of INS to human CNS and shows feasibility for stimulating single cortical nodes and associated sites and provided INS damage threshold estimates for cortical tissue. Our results suggest that INS is a promising tool for stimulation of functionally selective mesoscale circuits in the human brain, and may lead to advances in the future of precision medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2023.01.1678DOI Listing

Publication Analysis

Top Keywords

ins
12
infrared neural
8
neural stimulation
8
human
8
human cerebral
8
cerebral cortex
8
human brain
8
ins human
8
ins damage
8
optical imaging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!