Metal leaching is a key issue in cobalt-based catalysts/PMS systems, which results in the decline of catalytic ability and serious secondary pollution. Hence, a nitrogen-rich carbon framework with cobalt node (Co-NC-920) with low cobalt leaching was synthesized based on zeolite imidazole framework (ZIF) and g-CN to activate peroxymonosulfate (PMS) for the degradation of carbamazepine (CBZ). With the restriction of nitrogen-rich carbon framework, cobalt can disperse better and form stable cobalt-nitrogen bonds, thus only 0.09 mg/L cobalt ions were leached in the solution. More than 99.9% of CBZ can be removed within 30 min of PMS addition. Further investigation revealed that O, SO and high-valent cobalt species were primarily responsible for CBZ degradation in the Co-NC-920/PMS system and different reactive oxygen species (ROS) were distinguished and quantified, finding O was predominant. The degradation process was realized by the coexistence of free radicals and non-free radicals. Moreover, CBZ degradation capacity of the catalyst was evaluated under the influence of common anions and in actual waterbody. Finally, the possible degradation pathways of CBZ were proposed and the toxicity of the intermediates was analyzed. This work provides a new approach for the synthesis of cobalt-based nitrogen-rich carbon catalysts with low leaching and high efficient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138026 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.
Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fuzhou University, Chemistry, 523 Gongye Rd, Gulou, 350000, Fuzhou, CHINA.
Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!