Aims: Cancer metastasis is the major cause of cancer-related deaths. There are few prior studies reported on molecules targeting C-X-C chemokine receptor (CXCR) family and manganese superoxide dismutase (MnSOD). CXCRs are known to involve in angiogenesis, metastasis, cell survival and MnSOD is reported to be related in Epithelial-mesenchymal transition (EMT).
Main Methods: Cell viability and cell proliferation were measured by MTT and BrdU assay. Protein expression level of CXCR4/7, MMP-2/9, MnSOD, and EMT markers were evaluated by Western blot analysis. mRNA levels of Snail and Occludin were analyzed by Real-time RT-qPCR. Expression of EMT markers in cells was observed by immunocytochemistry. Cell invasion and migrations were evaluated by wound healing assay and boyden chamber assay.
Key Findings: We noticed that LGA abolished proliferation, invasive ability, and cellular migration. LGA down-regulated the protein levels of mesenchymal markers such as Twist, Snail, Fibronectin, and Vimentin in CXCL12-treated HCC cells. It also suppressed the gelatinolytic activity of MMP-9/2. The amplification of MnSOD increased EMT-like phenotypes but with LGA treatment, these phenotypes were markedly attenuated. The overexpression of MnSOD increased the ROS levels significantly but ROS levels were decreased upon exposure to LGA and deletion of MnSOD suppressed the levels of various mesenchymal proteins.
Significance: LGA could function as a novel anti-metastatic agent by suppressing metastasis and EMT process via attenuation of MnSOD expression in hepatocellular carcinoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2023.121458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!