Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sulfur mustard (SM) remains a highly dangerous chemical weapon capable of producing mass casualties through liquid or vapor exposure. The cornea is highly sensitive to SM toxicity and exposure to low vapor doses can cause incapacitating acute injuries. At higher doses, corneas fail to fully heal and subsequently develop a constellation of symptoms known as mustard gas keratopathy (MGK) that causes reduced quality of life and impaired or lost vision. Despite a century of research, there are no specific treatments for acute or persistent ocular SM injuries. Here I summarize toxicological, clinical and pathophysiological mechanisms of SM vapor injury in the cornea, describe a preclinical model of ocular SM vapor exposure for reproducible therapeutic studies, and propose new approaches to improve evaluation of therapeutic effects. I also describe recent findings illustrating the delayed development of a transient but severe recurrent corneal lesion that, in turn, triggers the emergence of secondary keratopathies characteristic of the chronic form of MGK. Development of this recurrent lesion is SM dose-dependent, although the severity of the recurrent lesion appears SM dose-independent. Similar recurrent lesions have been reported in multiple species, including humans. Given the mechanistic relationship between the recurrent lesion and chronic, secondary keratopathies, I hypothesize that preventing the development of the recurrent lesion represents a novel and potentially valuable therapeutic approach for treatment of severe corneal SM injuries. Although ocular exposure to SM vapor continues to be a challenging therapeutic target, establishing consistent and reproducible models of corneal injury that enhance mechanistic and pathophysiological understanding will help satisfy regulatory requirements and accelerate the development of effective therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975063 | PMC |
http://dx.doi.org/10.1016/j.exer.2023.109395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!