Accurate perception of verticality is critical for postural maintenance and successful physical interaction with the world. Although previous research has examined the independent influences of body orientation and self-motion under well-controlled laboratory conditions, these factors are constantly changing and interacting in the real world. In this study, we examine the subjective haptic vertical in a real-world scenario. Here, we report a bias of verticality perception in a field experiment on the Hong Kong Peak Tram as participants traveled on a slope ranging from 6° to 26°. Mean subjective haptic vertical (SHV) increased with slope by as much as 15°, regardless of whether the eyes were open (Experiment 1) or closed (Experiment 2). Shifting the body pitch by a fixed degree in an effort to compensate for the mountain slope failed to reduce the verticality bias (Experiment 3). These manipulations separately rule out visual and vestibular inputs about absolute body pitch as contributors to our observed bias. Observations collected on a tram traveling on level ground (Experiment 4A) or in a static dental chair with a range of inclinations similar to those encountered on the mountain tram (Experiment 4B) showed no significant deviation of the subjective vertical from gravity. We conclude that the SHV error is due to a combination of large, dynamic body pitch and translational motion. These observations made in a real-world scenario represent an incentive to neuroscientists and aviation experts alike for studying perceived verticality under field conditions and raising awareness of dangerous misperceptions of verticality when body pitch and translational self-motion come together.

Download full-text PDF

Source
http://dx.doi.org/10.1163/22134808-bja10086DOI Listing

Publication Analysis

Top Keywords

body pitch
20
pitch translational
12
subjective haptic
12
haptic vertical
12
real-world scenario
8
body
7
experiment
6
verticality
5
translational body
4
body motion
4

Similar Publications

Maximizing phonation: impact of inspiratory muscle strengthening on vocal durations and pitch range.

BMC Pulm Med

January 2025

Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Background: This study investigated the acute effects of inspiratory muscle warm-up (IWU) on vocal performance in singers. Proper vocal and respiratory warm-up can enhance vocal range, quality, and endurance. The aim was to determine whether IWU improves maximum phonation time and pitch range, contributing to better voice production efficiency (vocal efficiency) and reduced fatigue.

View Article and Find Full Text PDF

Injuries are commonplace in the overhead athlete, with many occurring to the shoulder and elbow. The increasing prevalence of injuries to the shoulder and elbow has been discussed at length in recent years, with increased research focus being placed on arm care for rehabilitation and prevention strategies. Even though the pitching motion is well-established as a whole-body kinetic chain movement, most attention in rehabilitation and prevention efforts is often placed on the upper extremity.

View Article and Find Full Text PDF

Background: Repetitive pitching causes immediate changes in the medial elbow joint. However, the recovery process from these changes is not clear.

Purpose/hypothesis: The purpose of this study was to investigate the recovery of the medial elbow joint in the 24-hour period after pitching.

View Article and Find Full Text PDF
Article Synopsis
  • Neural interfaces can evoke specific neuron responses but often face challenges due to unpredictable nonlinearity when multiple electrodes are stimulated simultaneously.
  • A biophysical model was created to study how retinal ganglion cells (RGCs) respond to this multi-electrode stimulation, and it was validated with real data from macaque retinas recorded through a microelectrode array.
  • The model demonstrated that the positioning of electrodes significantly influences the response, showing that spikes can summate linearly or nonlinearly based on their proximity to the cell body and axon, supporting the hypothesis of multiple spike initiation sites.
View Article and Find Full Text PDF

Background: Significant associations have been established among individual maximum joint and segment velocities with throwing arm kinetics and ball velocity in baseball.

Purpose: Investigate how pitches with the fastest maximum joint and segment velocities, in both ideal and non-ideal sequence order, may impact ball velocity and throwing arm kinetics in professional baseball pitchers.

Methods: Professional(n=338) pitchers threw 8-12 fastball pitches while evaluated with 3D-motion capture (480 Hz).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!