Objective: The concept of 'developmental and epileptic encephalopathy (DEE)' recognises that in infants presenting with severe early-onset epilepsy, neurodevelopmental comorbidity may be attributable to both the underlying cause and to adverse effects of uncontrolled epileptic activity. There is no direct genotype - phenotype correlation in DEEs. This study aimed to report the genetic and phenotypic differences in patients with DEE.
Methods: Genetic evaluations of the patients were performed due to epilepsy combined with developmental delay, epileptic encephalopathy, motor deficits, autistic features, or cognitive impairment. Patients were assessed for demographic characteristics, medical history, family history, psychomotor development, seizure control interventions, electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings.
Results: This study included 20 children aged 0-16 years who were diagnosed as having DEE.The types of DEE detected in our study were DEE 2, 4, 6B, 7, 11, 26, 30, 33, 35, 42, 58, 62, and 67.Status epilepticus was recorded in only DEE7. The most common EEG abnormality was multifocal epileptic discharges (35%,) followed by burst-suppression patterns in patients with neonatal-onset seizures. Thirteen of the children were aged over 2 years, two (15%) were non-ambulatory and six (46%) were non-verbal. MRI scans were normal in 80% of the patients. Refractory epilepsy seen in 33% of cases.De-novo mutation, microcephaly and dysmorphic findings accompany resistant seizures and are associated with poor prognosis.
Discussion: For patients with movement disorders, developmental delay, autism, and ID with or without epilepsy in any period of their life, next-generation sequencing is the only diagnostic technique available, with genetic analysis often being the only diagnostic method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01616412.2023.2170917 | DOI Listing |
The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic GC repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
Background And Aim: COVID-19 is associated with neurological complications, termed neuro-COVID, affecting patient outcomes. We aimed to evaluate the association between serum neurofilament light chain (NfL) and S100B biomarkers with the presence of neurological manifestations and functional prognosis in COVID-19 patients.
Methods: A multicenter prospective cohort study was conducted in three hospitals in the Emilia-Romagna region, Italy, from March 2020 to April 2022.
Parkinsonism Relat Disord
January 2025
Unit of Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy.
Segmental Brainstem Myoclonus (SBM) is a rare movement disorder characterized by rhythmic contractions of muscles innervated by brainstem segments. We report a 20-year-old patient with ADCK3-related spinocerebellar ataxia type 9 (SCAR9) presenting with sudden-onset myoclonic movements of the throat, tongue, and soft palate. Brain MRI showed stable findings, including dentate nucleus hyperintensities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!