Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although free hydroxyl radical (·OH) generated on OMS-2-based catalysts during the catalytic ozonation process have been shown as important reactive oxygen species (ROSs) for toluene degradation, improvement of surface ·OH formation ability remains challenging. Here, Na, K, Rb, and Cs-OMS-2-SO/ZSM-5 catalysts were prepared, characterized and evaluated for catalytic ozonation of toluene. Both characterizations and DFT calculations showed that the appropriate alkali metal introduction made the catalyst possess with appropriate crystalline, reducibility, and acidity, which was favorable for catalytic ozonation of toluene. Characterizations also showed that alkali metal introduction resulted in water molecule adsorption on Brönsted acid sites of the catalysts, which made water molecule activation by ozone to form ·OH more easily. The introduction of K content of ∼ 5.9 wt% yielded K-OMS-2-SO/ZSM-5 catalyst with the highest Brönsted acid sites and thus formed the most ·OH among the five prepared catalysts. As a result, the catalyst exhibited excellent toluene conversion and CO selectivity for catalytic ozonation of toluene at room temperature and ambient humidity. Furthermore, the catalytic activity of deactivated K-OMS-2-SO/ZSM-5 catalyst was recovered after regeneration by a combination of water washing and heat treatment. Finally, a complete mechanism for toluene catalytic ozonation, catalyst deactivation, and regeneration was proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.130900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!