Cordycepin suppresses vascular inflammation, apoptosis and oxidative stress of arterial smooth muscle cell in thoracic aortic aneurysm with VEGF inhibition.

Int Immunopharmacol

Department of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. Electronic address:

Published: March 2023

Background: Thoracic aortic aneurysm (TAA) is a type of common and serious vascular disease, in which inflammation, apoptosis and oxidative stress are strongly involved in the progression. Cordycepin, a bioactive compound from Cordyceps militaris, exhibits anti-inflammatory and anti-oxidative activities. This study aimed to address the role and mechanism of cordycepin in TAA.

Methods: The thoracic aortas were perivascularly administrated with calcium chloride (CaCl), and human aortic smooth muscle cells (HASMCs) were incubated with angiotensin II (Ang II) to simulate the TAA model in vivo and in vitro, respectively. The effect and mechanism of cordycepin in TAA were explored by hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), immunofluorescence (IF), western blot, biochemical test, cell counting kit-8 (CCK-8), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assays.

Results: Cordycepin improved the CaCl-induced the aneurysmal alteration and disappearance of normal wavy elastic structures of the aorta tissues, TAA incidence and thoracic aortic diameter in rats, and Ang II-induced the cell viability of HASMCs. Cordycepin reversed the CaCl-induced the relative protein expression of cleaved caspase 9, cleaved caspase 3, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-1β, and the relative levels of glutathione (GSH), malonaldehyde (MDA) and reactive oxygen species (ROS) in vivo, or Ang II-induced these changes in vitro. Mechanically, cordycepin reduced the relative protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), cluster of differentiation 31 (CD31) and endothelial nitric oxide synthase (eNOS) in the Ang II-induced HASMCs. Correspondingly, overexpression of VEGF increased the levels of the indicators involved in apoptosis, inflammation and oxidative stress, which were antagonized with the cordycepin incubation in the Ang II-induced HASMCs.

Conclusion: Cordycepin inhibited apoptosis, inflammation and oxidative stress of TAA through the inhibition of VEGF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.109759DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
ang ii-induced
16
thoracic aortic
12
cordycepin
9
inflammation apoptosis
8
apoptosis oxidative
8
smooth muscle
8
aortic aneurysm
8
mechanism cordycepin
8
relative protein
8

Similar Publications

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Objective: To study the effect of Dapagliflozin on ferroptosis in rabbits with chronic heart failure and to reveal its possible mechanism.

Methods: Nine healthy adult male New Zealand white rabbits were randomly divided into Sham group (only thorax opening was performed in Sham group, no ascending aorta circumferential ligation was performed), Heart failure group (HF group, ascending aorta circumferential ligation was performed in HF group to establish the animal model of heart failure), and Dapagliflozin group (DAPA group, after the rabbit chronic heart failure model was successfully made in DAPA group). Dapagliflozin was given by force-feeding method.

View Article and Find Full Text PDF

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!