Radon-222 (Rn) and its decay products are the primary sources of a population's exposure to background ionizing radiation. Radon decay products are the leading cause of lung cancer for non-smokers and the second leading cause of lung cancer after smoking for smokers. A community-driven long-term radon survey was completed in 232 residential homes in different subdivisions of Whitehorse, the capital of the Yukon, during the heating season from November to April in 2016-2017 and in 2017-2018. Radon concentrations were measured in living rooms and bedrooms on ground floors. The arithmetic and geometric means of indoor radon activity concentrations in different subdivisions of Whitehorse ranged from 52 ± 0.6 Bq mand 37 ± 2.3 Bq min the Downtown area of Whitehorse to 993.0 ± 55.0 Bq mand 726.2 ± 2.4 Bq min Wolf Creek. Underlying geology and glacial surfaces may partly explain these variations of indoor radon concentrations in subdivisions of Whitehorse. A total of 78 homes (34.0%) had radon concentrations higher than 100 Bq m, 47 homes (20.5%) had concentrations higher than 200 Bq mand 33 homes (14.4%) had concentrations higher than 300 Bq m. The indoor radon contribution to the annual effective inhalation dose to residents ranged from 3.0 mSv in the Downtown area to 51.0 mSv in Wolf Creek. The estimated annual average dose to adults in Whitehorse, Yukon, is higher than the world's average annual effective dose of 1.3 mSv due to the inhalation of indoor radon. The annual radon inhalation effective dose was assessed using radon measurements taken during winter; hence the assessed dose may be overestimated. Cost-efficient mitigation methods are available to reduce radon in existing buildings and to prevent radon entry into new buildings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6498/acb82a | DOI Listing |
Sci Rep
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Aomori, Japan.
Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.
Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
State Institution «O.M. Marzіeiev Institute for Public Health of the National Academy of Medical Sciences of Ukraine», 50 Hetman Pavlo Polubotok Str., Kyiv, 02094, Ukraine.
Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.
Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.
Biomed Environ Sci
November 2024
Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.
Objective: We aimed to analyze the current indoor radon level and estimate the population risk of radon-induced lung cancer in urban areas of China.
Methods: Using the passive monitoring method, a new survey on indoor radon concentrations was conducted in 2,875 dwellings across 31 provincial capital cities in Chinese mainland from 2018 to 2023. The attributable risk of lung cancer induced by indoor radon exposure was estimated based on the risk assessment model.
Health Phys
December 2024
Hatay Mustafa Kemal University, Department of Nuclear Medicine, Hatay, Türkiye.
In this study, the occupational radiation dose, radon gas, and non-ionizing radiation doses originating from electromagnetic fields (EMF) to which radiation workers are exposed were monitored and evaluated for 1 y. Using electronic personnel dosimeters (EPD), average daily radiation doses based on the number of patients and annual average effective dose results of radiation workers were obtained over a period of 1 y. Also, the annual effective dose and risk values were calculated for 8 h and 24 h by taking radon gas measurements at 2-mo intervals in the nuclear medicine department.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!