As mesenchymal stem-cell-derived small extracellular vesicles (MSC-sEVs) have been widely applied in treatment of degenerative diseases, it is essential to improve their cargo delivery efficiency in specific microenvironments of lesions. However, the interaction between the microenvironment of recipient cells and MSC-sEVs remains poorly understood. Herein, we find that the cargo delivery efficiency of MSC-sEVs was significantly reduced under hypoxia in inflammaging nucleus pulposus cells due to activated endocytic recycling of MSC-sEVs. Hypoxia-inducible factor-1 (HIF-1)-induced upregulated RCP (also known as RAB11FIP1) is shown to promote the Rab11a-dependent recycling of internalized MSC-sEVs under hypoxia via enhancing the interaction between Rab11a and MSC-sEV. Based on this finding, si-RCP is loaded into MSC-sEVs using electroporation to overcome the hypoxic microenvironment of intervertebral disks. The engineered MSC-sEVs significantly inhibit the endocytic recycling process and exhibit higher delivery efficiency under hypoxia. In a rat model of intervertebral disk degeneration (IDD), the si-RCP-loaded MSC-sEVs successfully treat IDD with improved regenerative capacity compared with natural MSC-sEV. Collectively, the findings illustrate the intracellular traffic mechanism of MSC-sEVs under hypoxia and demonstrate that the therapeutic capacity of MSC-sEVs can be improved via inhibiting endocytic recycling. This modifying strategy may further facilitate the application of extracellular vesicles in hypoxic tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c10351DOI Listing

Publication Analysis

Top Keywords

endocytic recycling
16
cargo delivery
12
extracellular vesicles
12
delivery efficiency
12
msc-sevs
10
vesicles hypoxic
8
hypoxic tissues
8
msc-sevs hypoxia
8
recycling
5
augmenting intracellular
4

Similar Publications

GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.

View Article and Find Full Text PDF

Phostensin (PTS) encoded by KIAA1949 binds to protein phosphatase 1, F-actin, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Most EHD-binding proteins contain a consensus motif, Asn-Pro-Phe (NPF), which interacts with the C-terminal EH domain of EHD proteins. Nevertheless, the NPF motif is absent in PTS.

View Article and Find Full Text PDF

Unlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.

View Article and Find Full Text PDF

A Commander-independent function of COMMD3 in endosomal trafficking.

bioRxiv

December 2024

Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.

Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood.

View Article and Find Full Text PDF

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!