Electrochemical stability and interfacial reactions are crucial for rechargeable aqueous zinc batteries. Electrolyte engineering with low-cost aqueous electrolytes is highly required to stabilize their interfacial reactions. Herein, we propose a design strategy using glutamic additive and its derivatives with modification of hydrogen-bonding network to enable Zn aqueous battery at a low concentration (2 m ZnSO + 1 m LiSO). Computational, / spectroscopic, and electrochemical studies suggest that additives with moderate interactions, such as 0.1 mol % glutamic additive (G1), preferentially absorb on the Zn surface to homogenize Zn plating and favorably interact with Zn in bulk to weaken the interaction between HO and Zn. As a result, uniform deposition and stable electrochemical performance are realized. The Zn||Cu half-cell lasts for more than 200 cycles with an average Coulombic efficiency (CE) of >99.32% and the Zn||Zn symmetrical cells for 1400 h with a low and stable overpotential under a current density of 0.5 mA cm, which is better than the reported results. Moreover, adding 0.1 mol % G1 to the Zn||LFP full cell improves its electrochemical performance with stable cycling and achieves a remarkable capacity of 147.25 mAh g with a CE of 99.79% after 200 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c18154DOI Listing

Publication Analysis

Top Keywords

hydrogen-bonding network
8
aqueous zinc
8
interfacial reactions
8
glutamic additive
8
electrochemical performance
8
200 cycles
8
in-depth insight
4
insight passive
4
passive film
4
film hydrogen-bonding
4

Similar Publications

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

A flexible wearable sensor based on the multiple interaction and synergistic effect of the hydrogel components with anti-freezing, low swelling for human motion detection and underwater communication.

Int J Biol Macromol

January 2025

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:

To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl endows the Gel/PSAA-Al hydrogel fantastic anti-freezing (-31.

View Article and Find Full Text PDF

Confinement of carbon dots into carboxymethyl cellulose matrice to prepare solid-state fluorescent films and couple with Eu-MOF toward white light-emitting diodes.

Int J Biol Macromol

January 2025

The Liaoning Province Key Laboratory of Paper and Pulp Engineering, The Dalian Key Laboratory of High value application and development of Botanical Resources, The Key Laboratory of High Value Utilization of Botanical Resources of China Light Industry, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:

As a novel fluorescent carbon nanomaterial, carbon dots are restricted by their poor fluorescence in the solid state, although they exhibit favorable photoluminescence in solution. N-doped carbon dots (N-CDs) and solid-state fluorescence films were prepared using green and renewable cellulose-derived materials, respectively. The hydrogen bonding network of carboxymethyl cellulose (CMC) inhibits the self-aggregation behavior of N-CDs, which leads to solid-state fluorescence.

View Article and Find Full Text PDF

Atomistic dynamics of elimination and substitution driven by entrance channel.

J Chem Phys

January 2025

Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.

E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction.

View Article and Find Full Text PDF

Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!