Due to the complexity and heterogeneity in the tumor microenvironment, the efficacy of breast cancer treatment has been significantly impeded. Here, we established a living system using an engineered M13 bacteriophage through chemical cross-linking and biomineralization to remodel the tumor microenvironment. Chemically cross-linking of the engineered bacteriophage gel (M13 Gel) could in situ synthesize photothermal palladium nanoparticles (PdNPs) on the pVIII capsid protein to obtain M13@Pd Gel. In addition, NLG919 was further loaded into a gel to form (M13@Pd/NLG gel) for down-regulating the expression of tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Both in vitro and in vivo studies showed that the M13 bacteriophage served not only as a cargo-loaded device but also as a self-immune adjuvant, which induced the immunogenic death of tumor cells effectively and down-regulated IDO1 expression. Such a bioactive gel system constructed by natural living materials could reverse immunosuppression and significantly improve the anti-breast cancer response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c04279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!