Nutrition and epigenetic programming.

Curr Opin Clin Nutr Metab Care

Department for Cytopathology, Heinrich-Heine-University Düsseldorf, Düsseldorf.

Published: May 2023

AI Article Synopsis

  • - The study focuses on how nutritional molecules and their metabolites influence epigenomic programming in human tissues and cells, affecting long-term cellular functions! - It highlights the role of chromatin, which acts as an epigenetic memory, influenced by dietary components that can change gene expression and impact health, particularly in relation to complex diseases like cancer and metabolic syndrome! - This research introduces the field of nutritional epigenetics, suggesting that our diet can shape epigenetic processes and therefore has significant implications for disease prevention and risk assessment!

Article Abstract

Purpose Of Review: The aim of this study is to highlight the epigenomic programming properties of nutritional molecules and their metabolites in human tissues and cell types.

Recent Findings: Chromatin is the physical expression of the epigenome and has a memory function on the level of DNA methylation, histone modification and 3-dimensional (3D) organization. This epigenetic memory does not only affect transient gene expression but also represents long-lasting decisions on cellular fate. The memory is based on an epigenetic programming process, which is directed by extracellular and intracellular signals that are sensed by transcription factors and chromatin modifiers. Many dietary molecules and their intermediary metabolites serve as such signals, that is they contribute to epigenetic programming and memory. In this context, we will discuss about molecules of intermediary energy metabolism affecting chromatin modifier actions, nutrition-triggered epigenetic memory in pre- and postnatal phases of life; and epigenetic programming of immune cells by vitamin D. These mechanisms explain some of the susceptibility for complex diseases, such as the metabolic syndrome, cancer and immune disorders.

Summary: The observation that nutritional molecules are able to modulate the epigenome initiated the new nutrigenomic subdiscipline nutritional epigenetics. The concept that epigenetic memory and programming is directed by our diet has numerous implications for the interpretation of disease risk including their prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MCO.0000000000000900DOI Listing

Publication Analysis

Top Keywords

epigenetic programming
16
epigenetic memory
12
nutritional molecules
8
molecules intermediary
8
programming
6
memory
6
epigenetic
6
nutrition epigenetic
4
programming purpose
4
purpose review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!