AI Article Synopsis

  • The study examines how high-intensity interval training (HIIT) affects bone density and structure in an osteoporotic mouse model, focusing on the role of lactate in promoting these benefits.
  • Results indicated that both HIIT and lactate injections significantly improved bone mineral density (BMD) and biomechanical strength, but these effects were reduced when lactate transport was inhibited.
  • Histological and biochemical analyses confirmed that the increase in bone mass was linked to enhanced bone formation and osteoblast activity stimulated by lactate.

Article Abstract

Background: High-intensity interval training (HIIT) reportedly improves bone metabolism and increases bone mineral density (BMD). The purpose of the present study was to investigate whether lactate mediates the beneficial effects of exercise on BMD, bone microarchitecture, and biomechanical properties in an established osteoporotic animal model. In addition, we hypothesized that lactate-induced bone augmentation is achieved through enhanced osteoblast differentiation and mineralization.

Methods: A total of 50 female C57BL/6 mice were randomly allocated into 5 groups: the nonovariectomized group, the ovariectomized group (OVX), the HIIT group (OVX + HIIT), the HIIT with lactate transporter inhibition group (OVX + HIIT + INH), and the lactate subcutaneous injection group (OVX + LAC). After 7 weeks of intervention, bone mass, bone strength, and bone formation/resorption processes were evaluated via microcomputed tomography (micro-CT), biomechanical testing, histological analysis, and serum biochemical assays; in vitro studies were performed to explore the bone anabolic effect of lactate at the cellular level.

Results: Micro-CT revealed significantly increased BMD in both the OVX + HIIT group (mean difference, 41.03 mg hydroxyapatite [HA]/cm 3 [95% CI, 2.51 to 79.54 mg HA/cm 3 ]; p = 0.029) and the OVX + LAC group (mean difference, 40.40 mg HA/cm 3 [95% CI, 4.08 to 76.71 mg HA/cm 3 ]; p = 0.031) compared with the OVX group. Biomechanical testing demonstrated significantly improved mechanical properties in those 2 groups. However, the beneficial effects of exercise on bone microstructure and biomechanics were largely abolished by blocking the lactate transporter. Notably, histological and biochemical results indicated that increased bone formation was responsible for the bone augmentation effects of HIIT and lactate. Cell culture studies showed a marked increase in the expression of osteoblastic markers with lactate treatment, which could be eliminated by blocking the lactate transporter.

Conclusions: Lactate may have mediated the bone anabolic effect of HIIT in osteoporotic mice, which may have resulted from enhanced osteoblast differentiation and mineralization.

Clinical Relevance: Lactate may mediate the bone anabolic effect of HIIT and serve as a potential inexpensive therapeutic strategy for bone augmentation.

Download full-text PDF

Source
http://dx.doi.org/10.2106/JBJS.22.01028DOI Listing

Publication Analysis

Top Keywords

bone anabolic
16
group ovx
16
ovx hiit
16
bone
15
osteoblast differentiation
12
bone augmentation
12
lactate
11
hiit
9
lactate mediates
8
high-intensity interval
8

Similar Publications

Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.

Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures.

View Article and Find Full Text PDF

Obesity is a major public health issue worldwide. Despite various approaches to weight loss, the most effective technique for reducing obesity, as well as diabetes and associated diseases, is bariatric surgery. Increasingly, young women without children are undergoing bariatric surgery, vertical sleeve gastrectomy (VSG) being the most common procedure nowadays.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!