Diversity of Surface Fibril Patterns in Mimivirus Isolates.

J Virol

Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Published: February 2023

Among the most intriguing structural features in the known virosphere are mimivirus surface fibrils, proteinaceous filaments approximately 150 nm long, covering the mimivirus capsid surface. Fibrils are important to promote particle adhesion to host cells, triggering phagocytosis and cell infection. However, although mimiviruses are one of the most abundant viral entities in a plethora of biomes worldwide, there has been no comparative analysis on fibril organization and abundance among distinct mimivirus isolates. Here, we describe the isolation and characterization of Megavirus caiporensis, a novel lineage C mimivirus with surface fibrils organized as "clumps." This intriguing feature led us to expand our analyses to other mimivirus isolates. By employing a combined approach including electron microscopy, image processing, genomic sequencing, and viral prospection, we obtained evidence of at least three main patterns of surface fibrils that can be found in mimiviruses: (i) isolates containing particles with abundant fibrils, distributed homogeneously on the capsid surface; (ii) isolates with particles almost fibrilless; and (iii) isolates with particles containing fibrils in abundance, but organized as clumps, as observed in Megavirus caiporensis. A total of 15 mimivirus isolates were analyzed by microscopy, and their DNA polymerase subunit B genes were sequenced for phylogenetic analysis. We observed a unique match between evolutionarily-related viruses and their fibril profiles. Biological assays suggested that patterns of fibrils can influence viral entry in host cells. Our data contribute to the knowledge of mimivirus fibril organization and abundance, as well as raising questions on the evolution of those intriguing structures. Mimivirus fibrils are intriguing structures that have drawn attention since their discovery. Although still under investigation, the function of fibrils may be related to host cell adhesion. In this work, we isolated and characterized a new mimivirus, called Megavirus caiporensis, and we showed that mimivirus isolates can exhibit at least three different patterns related to fibril organization and abundance. In our study, evolutionarily-related viruses presented similar fibril profiles, and such fibrils may affect how those viruses trigger phagocytosis in amoebas. These data shed light on aspects of mimivirus particle morphology, virus-host interactions, and their evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9972986PMC
http://dx.doi.org/10.1128/jvi.01824-22DOI Listing

Publication Analysis

Top Keywords

mimivirus isolates
20
surface fibrils
16
mimivirus
12
fibril organization
12
organization abundance
12
megavirus caiporensis
12
isolates particles
12
fibrils
10
isolates
8
mimivirus surface
8

Similar Publications

Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.

ISME J

January 2025

Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.

The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.

View Article and Find Full Text PDF

Introduction: Metagenomic research has allowed the identification of numerous viruses present in the human body. Viruses may significantly increase the likelihood of developing intrauterine fetal growth restriction (FGR). The goal of this study was to examine and compare the virome of normal and FGR placentas using proteomic techniques.

View Article and Find Full Text PDF

Cytochromes b5 Occurrence in Viruses Belonging to the Order Megavirales.

Res Sq

October 2024

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.

Cytochrome b5 is a small electron transport protein that is found in animals, plants, fungi and photosynthetic proteobacteria where it plays key metabolic roles in energy production, lipid and sterol biosynthesis and cytochrome P450 biochemistry. Previously it was shown that a gene encoding a soluble and functional cytochrome b5 protein was encoded in the large double stranded DNA virus OtV2 that infects the unicellular marine green alga , the smallest free-living eukaryote described to-date. This single gene represented a unique finding in the virosphere.

View Article and Find Full Text PDF

[Occurrence and Distribution of Potential Dangerous Biological Agents in Beijing Suburban Rivers].

Huan Jing Ke Xue

July 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Dangerous biological agents (DBAs) refer to microorganisms, toxins, and other biological substances that have the potential to cause significant harm to humans, animals, plants, and the environment. They are the primary target of the prevention and response in China's Biosafety Law, and it is of great importance to clarify the characteristics of DBAs in the Beijing suburban rivers for the insurance of the water safety in Beijing. The typical Beijing suburban rivers (Mangniu River, Chaohe River, and Baihe River) were selected, and the occurrence and distribution of DBAs concerning the molecular biology composition as the nucleic acid (antibiotic resistance genes, ARGs), nucleic acid and proteins (viruses), and intact cellular structures (pathogens) were determined based on the metagenomics.

View Article and Find Full Text PDF

A long-term prospecting study on giant viruses in terrestrial and marine Brazilian biomes.

Virol J

June 2024

Laboratório de vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte city, Minas Gerais, Brazil.

Article Synopsis
  • The discovery of mimivirus in 2003 sparked global interest in exploring giant viruses, yet their diversity and distribution remain largely unknown.
  • A study conducted from 2012 to 2022 focused on isolating amoebal viruses from various Brazilian biomes using Acanthamoeba castellanii, processing 881 samples.
  • The research identified 67 amoebal viruses across all sample types and biomes, including several significant types like mimiviruses and marseilleviruses, showcasing the biodiversity of giant viruses in Brazil.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!