The objectives of this study were to investigate ) the effect of acute aerobic exercise on tumor hypoxia and blood perfusion, ) the impact of exercise intensity, ) the duration of the effect, and ) the effect of prolonged training on tumor hypoxia and tumor growth. Female CDF1 mice were inoculated with the C3H mammary carcinoma either in the mammary fat pad or subcutaneously in the back. For experiments on the effect of different intensities in a single exercise bout, mice were randomized to 30-min treadmill running at low-, moderate-, or high-intensity speeds or no exercise. To investigate the prolonged effect on hypoxia and tumor growth, tumor-bearing mice were randomized to no exercise (CON) or daily 30-min high-intensity exercise averaging 2 wk (EX). Tumor hypoxic fraction was quantified using the hypoxia marker Pimonidazole. Initially, high-intensity exercise reduced tumor hypoxic fraction by 37% compared with CON [ = 0.046; 95% confidence interval (CI): 0.1; 10.3] in fat pad tumors. Low- and moderate-intensity exercises did not. Following experiments investigating the duration of the effect-as well as experiments in mice with back tumors-failed to show any exercise-induced changes in hypoxia. Interestingly, prolonged daily training significantly reduced hypoxic fraction by 60% ( = 0.002; 95% CI: 2.5; 10.1) compared with CON. Despite diverging findings on the acute effect of exercise on hypoxia, our data indicate that if exercise has a diminishing effect, high-intensity exercise is needed. Prolonged training reduced tumor hypoxic fraction-cautiously suggesting a potential clinical potential. This study provides novel information on the effects of acute and chronic exercise on tumor hypoxia in mice. In contrast to the few related existing studies, diverging findings on tumor hypoxia after acute exercise were observed, suggesting that tumor model and location should be considered in future studies. Highly significant reductions in tumor hypoxia following chronic high-intensity exercise propose a future clinical potential but this should be investigated in patients.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00561.2022DOI Listing

Publication Analysis

Top Keywords

tumor hypoxia
24
high-intensity exercise
16
exercise
14
tumor
12
exercise tumor
12
tumor hypoxic
12
hypoxic fraction
12
hypoxia
10
aerobic exercise
8
hypoxia mice
8

Similar Publications

Head and Neck Paraganglioma in Pacak-Zhuang Syndrome.

JNCI Cancer Spectr

January 2025

Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.

Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.

View Article and Find Full Text PDF

Hypoxia-induced circPLOD2a/b promotes the aggressiveness of glioblastoma by suppressing XIRP1 through binding to HuR.

Commun Biol

January 2025

Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 430000, China.

Hypoxia is a common feature of glioblastoma (GBM). Circular RNAs (circRNAs) are identified as regulators in cancers. However, the role of circRNAs in GBM remains elusive.

View Article and Find Full Text PDF

Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion.

Cell Death Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.

Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted.

View Article and Find Full Text PDF

Malignant tumors pose a considerable threat to human life and health. Traditional treatments, such as radiotherapy and chemotherapy, often lack specificity, leading to collateral damage to normal tissues. Tumor microenvironment (TME) is characterized by hypoxia, acidity, redox imbalances, and elevated ATP levels factors that collectively promote tumor growth and metastasis.

View Article and Find Full Text PDF

The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!