Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.2) presents a controlled and cumulative release of PTX and Cur within 90 h. Moreover, NG-PC displays a remarkable killing effect against 4T1 and MCF-7 cells. antitumor evaluation on 4T1 tumor-bearing mice demonstrates that NG-PC has significantly higher ability to inhibit tumor growth, inducing necrosis, apoptosis and suppression of proliferation than that of a single drug. Our research provides a facile method to prepare a nano-drug delivery platform with excellent drug co-loading ability and synergistic antitumor effect.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb02254kDOI Listing

Publication Analysis

Top Keywords

photopolymerization 532
8
532 synergistically
8
synergistically suppressing
8
suppressing breast
8
breast tumors
8
nanogels co-loading
4
co-loading paclitaxel
4
paclitaxel curcumin
4
curcumin prepared
4
prepared photopolymerization
4

Similar Publications

Background: Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The technology of 3D printing, especially vat photopolymerization, is valuable for integrating nanoparticles into complex formulations.

View Article and Find Full Text PDF

Two-photon polymerization (TPP) has emerged as a favored advanced manufacturing tool for creating complex 3D structures in the sub-micron regime. However, the widescale implementation of this technique is limited partly due to the cost of a high-power femtosecond laser. In this work, a method is proposed to reduce the femtosecond laser 3D printing power by as much as 50% using a combination of two-photon absorption from an 800 nm femtosecond laser and single photon absorption from a 532 nm nanosecond laser.

View Article and Find Full Text PDF

Combined chemotherapy plays an increasingly important and practical role in the clinical treatment of malignant tumor. In this study, paclitaxel (PTX) and curcumin (Cur) are simultaneously encapsulated into nanogels (termed as NG-PC) by microemulsion photopolymerization at 532 nm for synergistically suppressing breast tumors. NG-PC with a size of 180 nm and a low polydispersity index (PDI < 0.

View Article and Find Full Text PDF

On the Use of Haloalkane/Acrylate-Based Holographic Gratings as Compression and Rotation Sensors.

Sensors (Basel)

December 2022

Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.

In this work, we test the effectiveness of using highly transparent holographic phase reflection and transmission volume gratings based on multifunctional acrylates as linear compression and rotation sensors. The gratings are recorded in a holographic mixture based on multi-reticulated acrylate and haloalkanes. To activate the photo-polymerization process, we used a mixture of 6-oxocamphore and rhodamine 6G.

View Article and Find Full Text PDF

Top-Performance Transmission Gratings with Haloalkanes-Based Polymeric Composite Materials.

Materials (Basel)

December 2022

Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.

We report on highly transparent holographic phase transmission volume gratings recorded in the visible region at λ = 532 nm. The maximum measured diffraction efficiency is higher than 80% with a grating pitch of Λ≈ 300 nm and a refractive index modulation Δn ≈ 0.018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!