Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report the discovery of drug-like small molecules that bind specifically to the precursor of the oncogenic and pro-inflammatory microRNA-21 with mid-nanomolar affinity. The small molecules target a local structure at the Dicer cleavage site and induce distinctive structural changes in the RNA, which correlate with specific inhibition of miRNA processing. Structurally conservative single nucleotide substitutions eliminate the conformational change induced by the small molecules, which is also not observed in other miRNA precursors. The most potent of these compounds reduces cellular proliferation and miR-21 levels in cancer cell lines without inhibiting kinases or classical receptors, while closely related compounds without this specific binding activity are inactive in cells. These molecules are highly ligand-efficient (MW < 330) and display specific biochemical and cellular activity by suppressing the maturation of miR-21, thereby providing an avenue toward therapeutic development in multiple diseases where miR-21 is abnormally expressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593481 | PMC |
http://dx.doi.org/10.1021/acschembio.2c00502 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!