Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microscale porous silicon materials have shown great application potential as anodes for next-generation lithium-ion batteries (LIBs); however, they face significant challenges, including mechanical structure instability, low intrinsic conductivity, and uncontrollable processing. In this study, a modified etching strategy combined with a facile sol-gel method is demonstrated to prepare microscale porous Si microspheres encapsulated by an inner amorphous carbon shell (≈10 nm) and an outer rigid anatase titanium oxide (TiO) shell (≈20 nm) (PSi@C@TiO), with the intact porous framework and core-shell-shell spherical structure. The interconnected pores can sufficiently accommodate the expansion of the Si core during lithiation. Moreover, the double shells can not only enhance the kinetic behavior of the PSi@C@TiO microspheres, but can act as a compact fence to force the Si core to expand toward the internal pores during lithiation, ensuring the integrity of the porous spherical structure. As a result, the PSi@C@TiO anodes show greatly superior high specific capacity, excellent rate capability, stable solid-electrolyte interphase (SEI) films and steady mechanical structure. It delivers a high reversible capacity of 1004 mA h g after 250 cycles at 0.5 A g. This study provides a modified method to prepare microscale porous Si anodes with a stable mechanical structure and long cycle life for LIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03775k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!