AI Article Synopsis

  • hATTR is a hereditary form of amyloidosis affecting around 50,000 people globally, commonly presenting as cardiac issues, polyneuropathy, or oculoleptomeningeal symptoms, with polyneuropathy being the most prevalent.
  • Recent advancements in treatment include Patisiran and Inotersen, which are RNA-targeted therapies that reduce the production of the transthyretin protein, aiming to mitigate the disease's progression.
  • The prognosis for hATTR is poor, typically with a median survival of less than 12 years, but these novel therapies offer promising strategies by addressing the disease at a genetic level.

Article Abstract

Background: Amyloidosis is a group of diseases with the common pathophysiology of protein misfolding and aberrant deposition in tissue. There are both acquired and hereditary forms of this disease, and this review focuses on the latter hereditary transthyretin-mediated (hATTR). hATTR affects about 50,000 individuals globally and mostly appears as one of three syndromes - cardiac, polyneuropathy, and oculoleptomeningeal. Polyneuropathy is the most common form, and there is usually some overlap in individual patients.

Results: Recently, novel therapeutic options emerged in the form of groundbreaking drugs, Patisiran and Inotersen, small interfering RNA molecules that target TTR and reduce the production of this protein. By targeting TTR mRNA transcripts, Inotersen decreases protein translation and production, reducing the deposition of misfolded proteins. It was shown to be both effective and safe for use and specifically formulated to concentrate in the liver - where protein production takes place.

Conclusion: hATTR is a rare, progressive, and debilitating disease. Its most common presentation is that of polyneuropathy, and it carries a very poor prognosis and a natural history conveying a median survival of < 12 years. Novel therapeutic options are groundbreaking by providing disease-modifying specific, targeted therapies against TTR production and deposition. The use of RNA interference (RNAi) opens the door to the treatment of hereditary diseases by targeting them at the genetic level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886172PMC
http://dx.doi.org/10.52965/001c.67910DOI Listing

Publication Analysis

Top Keywords

novel therapeutic
8
therapeutic options
8
inotersen treat
4
polyneuropathy
4
treat polyneuropathy
4
polyneuropathy associated
4
hereditary
4
associated hereditary
4
hereditary transthyretin
4
hattr
4

Similar Publications

Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair.

Biomater Adv

January 2025

Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:

The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.

View Article and Find Full Text PDF

Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates "RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK" pathways, which enhance cell division, survival, angiogenesis, and tumor growth while inhibiting apoptosis and metastasis. Secondary mutations (e.

View Article and Find Full Text PDF

Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!