Background: Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease transmitted to humans and livestock animals through the bite of infected ticks or close contact with infected persons' blood, organs, or other bodily fluids. The virus is responsible for severe viral hemorrhagic fever outbreaks, with a case fatality rate of up to 40%. Despite having the highest fatality rate of the virus, a suitable treatment option or vaccination has not been developed yet. Therefore, this study aimed to formulate a multiepitope vaccine against CCHF through computational vaccine design approaches.
Methods: The glycoprotein, nucleoprotein, and RNA-dependent RNA polymerase of CCHF were utilized to determine immunodominant T- and B-cell epitopes. Subsequently, an integrative computational vaccinology approach was used to formulate a multi-epitopes vaccine candidate against the virus.
Results: After rigorous assessment, a multiepitope vaccine was constructed, which was antigenic, immunogenic, and non-allergenic with desired physicochemical properties. Molecular dynamics (MD) simulations of the vaccine-receptor complex show strong stability of the vaccine candidates to the targeted immune receptor. Additionally, the immune simulation of the vaccine candidates found that the vaccine could trigger real-life-like immune responses upon administration to humans.
Conclusions: Finally, we concluded that the formulated multiepitope vaccine candidates would provide excellent prophylactic properties against CCHF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891764 | PMC |
http://dx.doi.org/10.1186/s12916-023-02750-9 | DOI Listing |
PLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
School of Human Sciences, London Metropolitan University, London, UK.
Mpox, formerly known as monkeypox, is a zoonotic disease caused by the Mpox virus (MPXV), which has recently attracted global attention due to its potential for widespread outbreaks. Initially identified in 1958, MPXV primarily spreads to humans through contact with infected wild animals, particularly rodents. Historically confined to Africa, the virus has expanded beyond endemic regions, with notable outbreaks in Europe and North America in 2022, especially among men who have sex with men (MSM).
View Article and Find Full Text PDFActa Parasitol
January 2025
Federal University of São João del-Rei, Divinópolis, MG, Brazil.
Purpose: Schistosomiasis remains a parasitic disease affecting millions of people worldwide, requiring interventions like vaccination. In previous work, our group used reverse vaccinology to identify two epitopes from the Schistosoma mansoni proteins, Sm050890 (44-58) and Sm141290 (225-239). This study evaluated the immune response profile and protection induced by peptides, as a mixture of immunogens, in murine vaccination trials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!