Rationale And Objective: Post-traumatic stress disorder (PTSD) is a prevalent and debilitating psychiatric disorder. However, its specific etiological mechanism remains unclear. Previous studies have shown that traumatic stress changes metabotropic glutamate receptor 5 (mGluR5) expression in the hippocampus (HIP) and prefrontal cortex (PFC). More importantly, mGluR5 expression is often accompanied by alterations in brain-derived neurotrophic factor (BDNF). Furthermore, BDNF/tropomyosin-associated kinase B (TrkB) signaling plays multiple roles, including roles in neuroplasticity and antidepressant activity, by regulating glutamate transporter-1 (GLT-1) expression. This study aims to explore the effects of inhibiting mGluR5 on PTSD-like behaviors and BDNF, TrkB, and GLT-1 expression in the HIP and PFC of inevitable foot shock (IFS)-treated rats.
Methods: Seven-day IFS was used to establish a PTSD rat model, and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (10 mg/kg, intraperitoneal injection) was used to inhibit the activity of mGluR5 during IFS in rats. After modeling, behavioral changes and mGluR5, BDNF, TrkB, and GLT-1 expression in the PFC and HIP were examined.
Results: First, the IFS procedure induced PTSD-like behavior. Second, IFS increased the expression of mGluR5 and decreased BDNF, TrkB, and GLT-1 expression in the PFC and HIP. Third, the mGluR5 antagonist blocked the above behavioral and molecular alterations.
Conclusions: mGluR5 was involved in IFS-induced PTSD-like behavior by changing BDNF, TrkB, and GLT-1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-023-06325-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!