Interest in peptide-based supramolecular materials has grown extensively since the 1980s and the application of computational methods has paralleled this. These methods contribute to the understanding of experimental observations based on interactions and inform the design of new supramolecular systems. They are also used to virtually screen and navigate these very large design spaces. Increasingly, the use of artificial intelligence is employed to screen far more candidates than traditional methods. Based on a brief history of computational and experimentally integrated investigations of peptide structures, we explore recent impactful examples of computationally driven investigation into peptide self-assembly, focusing on recent advances in methodology development. It is clear that the integration between experiment and computation to understand and design new systems is becoming near seamless in this growing field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202218067 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.
View Article and Find Full Text PDFCurr Opin Chem Biol
January 2025
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain. Electronic address:
Transmembrane ion exchange controls biological functions and is essential for life. Over the years, a great variety of nature-inspired artificial ion channels and carriers have been synthesized to control and promote ion exchange across biological membranes. In this context, peptides emerged as ideal scaffolds for synthetic ion channels due to their biocompatibility, accessibility and chemical versatility.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
NHC Key Laboratory for Critical Care Medicine, School of Medicine, Tianjin First Central Hospital, Research Institute of Transplant Medicine, Organ Transplant Center, Nankai University, Tianjin, 300071, China.
Islet transplantation is a promising therapy for diabetes, yet the limited survival and functionality of transplanted islet grafts hinder optimal outcomes. Glucagon-like peptide-1 (GLP-1), an endogenous hormone, has shown potential to enhance islet survival and function; however, its systemic administration can result in poor localization and undesirable side effects. To address these challenges, we developed a novel peptide-based nanofiber hydrogel incorporating GLP-1 functionality for localized delivery.
View Article and Find Full Text PDFThe field of peptide based supramolecular biomaterials is fast evolving. These types of constructs have been shown to find applications in the fields of bioimaging, drug delivery and scaffolds for chemical reactions. However, the community typically focuses on the use of two specific classes of structured peptides: α-helices and β-sheets, clearly neglecting a unique peptide secondary structure: the polyproline helix.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China.
Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!