Stimuli-responsive hybrid nanoparticles used for controllable catalysis have been attracting increasing attention. This study aims to prepare hybrid microgels with excellent temperature-sensitive colorimetric and catalytic properties through combining the surface plasmon resonance properties of gold nanoparticles (AuNPs) with the temperature-sensitive properties of poly(-isopropylacrylamide) (PNIPAM)-based microgels. Microgels with hydroxy groups (MG-OH) were prepared by soap-free emulsion polymerization, using -isopropylacrylamide as the main monomer, hydroxyethyl methylacrylate as the functional monomer, ,'-methylene bisacrylamide as the crosslinker, and 2,2'-azobis(2-methylpropionamidine) dihydrochloride as an initiator to ensure the microgels are positively charged. Furthermore, chemical modification on the surface of MG-OH was carried out by 3-mercaptopropyltriethoxysilane to obtain thiolated microgels (MG-SH). Two kinds of hybrid nanoparticles, AuNPs@MG-OH and AuNPs@MG-SH, were self-assembled, through electrostatic interaction between positive MG-OH and negative citrate-stabilized AuNPs as well as through synergistic bonding of electrostatic interaction and Au-S bonding between positive MG-SH and negative AuNPs. The morphology, stability, temperature-sensitive colorimetric properties, and catalytic properties of hybrid microgels were systematically investigated. Results showed that although both AuNPs@MG-OH and AuNPs@MG-SH exhibit good temperature-sensitive colorimetric properties and controllable catalytic properties for the reduction reaction of p-nitrophenol, AuNPs@MG-SH with synergistic bonding has better stability and higher catalytic performance than AuNPs@MG-OH. This work has good competitiveness against known PNIPAM-based materials and may provide an effective method for preparing smart catalysts by self-assembly with stimuli-responsive polymers, which has a great potential application for catalyzing a variety of reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c03236DOI Listing

Publication Analysis

Top Keywords

synergistic bonding
12
hybrid microgels
12
temperature-sensitive colorimetric
12
catalytic properties
12
gold nanoparticles
8
controllable catalysis
8
hybrid nanoparticles
8
aunps@mg-oh aunps@mg-sh
8
electrostatic interaction
8
colorimetric properties
8

Similar Publications

Synergistic effect of scattered rare metals on Pt/CeO for propane oxidative dehydrogenation with CO.

RSC Adv

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China

The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.

View Article and Find Full Text PDF

The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

To enable highly efficient in situ hydrogen release from methanol/water reforming at lower temperature, the integration of solar-energy offers a promising approach to activate methanol/water and substantially lower the activation energy of this reaction. Herein, we present a novel dual-vacancy defective hollow heterostructure derived from Metal-Organic Frameworks, featuring abundant surface hydroxyl groups and S/O vacancies, for photothermal-promoted methanol solution reforming into hydrogen. The [In2S3-x/In2O3-x](OH)y exhibits exceptional photothermal H2 evolution activity, achieving a production rate of 215.

View Article and Find Full Text PDF

Monitoring of p-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) in human urine and environmental water is of great importance for human health assessment and environmental protection, as they are both urinary metabolites of some poisonous pesticides and priority environmental pollutants. However, efficient extraction of trace levels of PNP and PNMC from complex matrices remains challenging. This study presented the synthesis of histidine-modified ZIF-90 on natural eggshell membrane (ESM@His-ZIF-90) via a facile one-step in-situ growth strategy, and its application as an adsorbent for dispersive membrane extraction (DME) of PNP and PNMC in human urine and environmental water.

View Article and Find Full Text PDF

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!