Motivated by potential applications in cardiac research, we consider the task of reconstructing the dynamics within a spatiotemporal chaotic 3D excitable medium from partial observations at the surface. Three artificial neural network methods (a spatiotemporal convolutional long-short-term-memory, an autoencoder, and a diffusion model based on the U-Net architecture) are trained to predict the dynamics in deeper layers of a cube from observational data at the surface using data generated by the Barkley model on a 3D domain. The results show that despite the high-dimensional chaotic dynamics of this system, such cross-prediction is possible, but non-trivial and as expected, its quality decreases with increasing prediction depth.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0126824DOI Listing

Publication Analysis

Top Keywords

surface data
8
reconstructing in-depth
4
in-depth activity
4
activity chaotic
4
chaotic spatiotemporal
4
spatiotemporal excitable
4
excitable media
4
media models
4
models based
4
based surface
4

Similar Publications

Adsorption Structure and Selectivity of Phenols in Water-Immersed Organomontmorillonite Investigated by Molecular Simulation.

Langmuir

January 2025

Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.

The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.

View Article and Find Full Text PDF

Horizontal Distortion Correction of AFM Images Based on Automatic Labeling of Feature Graphics.

Microsc Res Tech

January 2025

School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China.

The atomic force microscope (AFM) image will be inclined and bent due to the tilt angle between the probe and the sample surface. When the least squares fitting method is used to correct the horizontal distortion of the AFM image, the shape structure that is lower or higher than the sample base will affect the final fitting correction result. In view of the limitations of existing methods and the diversity of AFM images, an AFM image level distortion correction method based on automatic feature marking is proposed.

View Article and Find Full Text PDF

Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.

View Article and Find Full Text PDF

Normalization Based on Shift and Ion Intensity in SALDI-TOFMS Imaging of Samples with Non-Horizontal Surface.

Mass Spectrom (Tokyo)

December 2024

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.

Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.

View Article and Find Full Text PDF

Abortusequi ( Abortusequi) is the primary cause of abortions in equine animals, and can cause serious foodborne illness. Thus, effective biocontrol strategies are needed to decontaminate and control the emergence of foodborne diseases. In recent years, phages have been used as a new strategy for modulating foodborne pathogens and food safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!