Modern day complex experiments in physics demand highly efficient data acquisition (DAQ) systems capable of acquiring a large number of signals with a very high resolution and near zero dead time, without compromising on the event rate handling capability. To cater to the ever growing demands of the DAQ systems, an intelligent controller with a sequencer and an in-built busy logic has been developed. The heart of the controller is a field programmable gate array that provides (a) a sequencer engine, which holds a list of read-write commands that will be executed upon receiving a valid trigger, (b) a dual port random access memory divided into two blocks of 16 kbytes, each of which is configured in a ping-pong fashion to support data acquisition and data transfer functionalities simultaneously, thereby reducing the dead time, (c) a busy logic interface that validates the master strobe or trigger, a scalar for triggers received, and a time stamp engine for time stamping the events with 10 ns interval, (d) the Versa Module Europa (VME) backplane interface for 32 bit data transfer standards of the VME, and (e) a superspeed universal serial bus communication interface to transfer the data to a computer/single board computer (SBC). The SBC is capable of booting locally or through net via a preboot execution environment from a netboot server, and it contains the driver, libraries, and data server for data collection. A throughput of 32 megabytes per second (MB/s) has been achieved with an event size of 288 signals at an event rate of 30 kiloevents per second with medium slow slave modules, which may further increase up to 45 MB/s with faster slave modules. The VME controller supports an event size (number of signals) of up to 1023 in a single VME crate. Thus, this sequencer engine based VME crate controller development facilitates collection of a high volume of data with a large number of signals at higher event rates and the least dead time; it is named as Readout Ordained Sequencer Engine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0107168 | DOI Listing |
Ital J Pediatr
January 2025
Polistudium SRL, Milan, Italy.
Background: The PalliPed project is a nationwide, observational, cross-sectional study designed with the aim of providing a constantly updated national database for the census and monitoring of specialized pediatric palliative care (PPC) activities in Italy. This paper presents the results of the first monitoring phase of the PalliPed project, which was developed through the PalliPed 2022-2023 study, to update current knowledge on the provision of specialized PPC services in Italy.
Methods: Italian specialized PPC centers/facilities were invited to participate and asked to complete a self-reporting, ad-hoc, online survey regarding their clinical activity in 2022-2023, in the revision of the data initially collected in the first PalliPed study of 2021.
Acad Radiol
January 2025
Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:
Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Medical Imaging, Pingyin people's Hospital, Jinan 250400, China.
Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.
View Article and Find Full Text PDFUltrasonics
January 2025
The Center for Fast Ultrasound Imaging, Department of Health Technology. Technical University of Denmark, Ørsteds Plads Building 349, Lyngby, DK-2800, Denmark.
Non-invasive estimation of pressure differences using 2D synthetic aperture ultrasound imaging offers a precise, low-cost, and risk-free diagnostic tool. Unlike invasive techniques, this preserves natural blood flow and avoids the limitations of devices that occupy lumen space. This paper evaluates a previously published estimator, modified to incorporate Singular Value Decomposition (SVD) echo-cancellation, using data from ten healthy volunteers and one patient.
View Article and Find Full Text PDFUltrasonics
January 2025
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
In recent years, the widespread application of laser ultrasonic (LU) devices for obtaining internal material information has been observed. However, this approach demands a significant amount of time to acquire complete wavefield data. Hence, there is a necessity to reduce the acquisition time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!