Blood pressure (BP) measurement is an important physiological parameter for human health monitoring, which plays a significant role in the diagnosis of many incurable diseases. However, due to inaccuracies in the different types of BP measuring devices, the calibration of these BP measuring instruments is a major concern for a medical practitioner. Currently, these devices' calibration, testing, and validation are performed using rigorous methods with complex clinical trials and following the available documentary standards. This article describes the design and development of an indigenous mechanical test bench (MTB) system for the testing and calibration of multiple BP devices, as per International Organization of Legal Metrology (OIML) recommended documents e.g., OIML R 16-1 and OIML R 16-2. The developed system can test and calibrate 20 BP devices, simultaneously. The traceability of the developed MTB is established by performing its calibration against the Air Piston Gauge, a national primary vacuum standard. The estimated expanded measurement uncertainty evaluated is found to be ±0.11 mmHg, which is almost one order better than the measurement uncertainty required for the test and calibration of BP measuring instruments as per standard. The MTB has successfully been used to test and calibrate several BP measuring instruments. The data of one such device is reported herein as an indicator of the performance process. The calibration of these BP measuring instruments was performed in the static mode, and the estimated expanded measurement uncertainty was found to be ±1.25 mmHg. The developed MTB system would prove to be an excellent instrument for calibration laboratories, hospitals, regulatory agencies, and other users to test and calibrate 20 BP measuring devices simultaneously and cost-effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0100958DOI Listing

Publication Analysis

Top Keywords

measuring instruments
16
measuring devices
12
calibration measuring
12
test calibrate
12
measurement uncertainty
12
design development
8
mechanical test
8
test bench
8
calibration
8
testing calibration
8

Similar Publications

Objective: We investigated the construct validity, responsiveness, and interpretability of the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI) to determine its usefulness in measuring the functional level of gait.

Patients And Methods: This was a prospective observational study following the checklist of the Consensus-Based Standards for Selecting Health Measurement Instruments. The SCI-FAI consists of three items: Gait Parameter, Assistive Devices, and Temporal.

View Article and Find Full Text PDF

Background: During the course of the past two decades, head-mounted augmented reality surgical navigation (HMARSN) systems have been increasingly employed in a variety of surgical specialties as a result of both advancements in augmented reality-related technologies and surgeons' desires to overcome some drawbacks inherent to conventional surgical navigation systems. In the present time, most experimental HMARSN systems adopt overlain display (OD) that overlay virtual models and planned routes of surgical tools on corresponding physical tissues, organs, lesions, and so forth, in a surgical field so as to provide surgeons with an intuitive and direct view to gain better hand-eye coordination as well as avoid attention shift and loss of sight (LOS), among other benefits during procedures. Yet, its system accuracy, which is the most crucial performance indicator of any surgical navigation system, is difficult to ascertain because it is highly subjective and user-dependent.

View Article and Find Full Text PDF

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Atlantoaxial rotatory subluxation (AARS) in the adult population is primarily trauma-induced. Conservative and surgical treatments have both been used successfully in treating AARS. In cases where AARS cannot be reduced by conservative measures, open reduction and fusion is the conventional treatment approach.

View Article and Find Full Text PDF

Background: The Shoulder Pain and Disability Index (SPADI) is a widely used 13-item shoulder-specific patient-reported outcome measure for shoulder pain disorders. The English version of SPADI is easy to use and demonstrates excellent measurement properties for clinical and research settings.

Purpose: To translate and culturally adapt an Indonesian version of SPADI (SPADI-IDN) and then validate its use in Indonesian patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!