Based on network pharmacology, molecular docking, and in vitro experimental verification, this study aims to explore the effect of Albiziae Cortex-Tribuli Fructus combination on HSC-LX2 pyroptosis. Specifically, the targets of Albiziae Cortex, Tribuli Fructus, and hepatic fibrosis were retrieved from an online database and CNKI, and "drug-component-target" network and "drug-component-target-disease" network were constructed. Protein-protein interaction(PPI) network was established based on STRING. Metascape was employed for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment, and the mechanism of Albiziae Cortex-Tribuli Fructus combination against liver fibrosis was predicted. Molecular docking was used to verify some of the results of network pharmacology, and in vitro experiment was carried out to further verify the above conclusions. According to the results of network pharmacological analysis, 25 active components and 439 targets of Albiziae Cortex-Tribuli Fructus combination and 152 anti-liver fibrosis targets were screened out, including nucleotide-binding oligomerization domain and leucine-rich-repeat-and pyrin-domain-containing 3(NLRP3) and caspase-1. The key targets were involved in 194 KEGG pathways in which the NOD-like receptor signaling pathway topped. The binding common targets were related to pyroptosis. The results of in vitro experiment showed that the pair-containing serum reduced the proliferation rate of HSC-LX2 and the content of reactive oxygen species(ROS), interleukin-18(IL-18), and interleukin-1β(IL-1β)(P<0.05). Western blot and qRT-PCR suggested that the protein and gene expression of NLRP3, caspase-1, α-smooth muscle actin(α-SMA), and gasdermin D(GSDMD) in HSC-LX2 increased after AngⅡ stimulation, and the expression decreased after the intervention of pair-containing serum(P<0.05). In summary, the pair-containing serum can inhibit the classic pathway of pyroptosis, which may be the anti-liver fibrosis mechanism. This is consistent with the predicted results of network pharmacology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20221011.401 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
January 2023
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 310053, China.
Based on network pharmacology, molecular docking, and in vitro experimental verification, this study aims to explore the effect of Albiziae Cortex-Tribuli Fructus combination on HSC-LX2 pyroptosis. Specifically, the targets of Albiziae Cortex, Tribuli Fructus, and hepatic fibrosis were retrieved from an online database and CNKI, and "drug-component-target" network and "drug-component-target-disease" network were constructed. Protein-protein interaction(PPI) network was established based on STRING.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!