A mixture of risperidone and eight major tea catechins: (-)-epicatechin-3-O-gallate (ECg), (-)-epigallocatechin-3-O-gallate (EGCg), (-)-catechin-3-O-gallate (Cg), (-)-gallocatechin-3-O-gallate (GCg), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (+)-catechin (CA), or (+)-gallocatechin (GC), in tartaric acid buffer (pH 3.0) afforded a precipitate. Amounts of risperidone and these catechins in the precipitate were measured by quantitative H-NMR (qNMR). About half or more of risperidone used was precipitated by gallated catechins ECg, EGCg, Cg, and GCg; on the other hand, it was precipitated little by non-gallated catechins EC, EGC, CA, and GC. Furthermore, risperidone was precipitated more by 2,3-trans gallated catechins Cg and GCg than 2,3-cis gallated catechins ECg and EGCg. Regarding the amount of tea catechins in the precipitate obtained by a mixture of risperidone and Catechin Mixture, the amounts of 2,3-cis gallated catechins EGCg and ECg were much larger than those of the other green tea catechins GCg, EC, EGC, CA, and GC. It was considered that risperidone was mainly precipitated by EGCg and ECg in Catechin Mixture. Therefore, it can be concluded that when patients take risperidone with catechin-rich beverages, the efficacy of risperidone reduces, mainly because the 2,3-cis gallated catechins EGCg and ECg form complexes with risperidone and precipitate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c22-00651 | DOI Listing |
Nutrients
January 2025
School of Pharmacy, Shaoyang University, Shaoyang 422000, China.
Depression, a serious mental illness, is characterized by high risk, high incidence, persistence, and tendency to relapse, posing a significant burden on global health. The connection between depression and gut microbiota is an emerging field of study in psychiatry and neuroscience. Understanding the gut-brain axis is pivotal for understanding the pathogenesis and treatment of depression.
View Article and Find Full Text PDFNutrients
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
Epigallocatechin gallate (EGCG) is the predominant bioactive catechin in green tea, and it has been ascribed a range of beneficial health effects. Current increases in obesity and non-alcoholic fatty liver disease (NAFLD) rates represent a persistent and burdensome threat to global public health. While many clinical studies have demonstrated that EGCG is associated with positive effects on various health parameters, including metabolic biomarkers, waist circumference, and body weight when consumed by individuals affected by obesity and NAFLD, there are also some reports suggesting that it may entail some degree of hepatotoxicity.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil.
This study evaluated the color change (ΔE) and penetration depth (PD) of white spot lesions (WSLs) infiltrated with the resin infiltrant (Icon) functionalized with methacrylate epigallocatechin-3-gallate (EGCG). To introduce polymerizable double bonds, EGCG was reacted with methacryloyl chloride (EM). Subsequently, the Icon resin infiltrant (I) was loaded with neat EGCG (IE) or EGCG-methacrylate (IEM) at 2 wt% each.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!