NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy.

Acta Biomater

Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:

Published: March 2023

Development of novel broad-spectrum sterilization is an efficient strategy that can overcome drug resistance and avoid antibiotics abuse toward bacterial-infected diseases. Photothermal therapy (PTT) in the second near-infrared (NIR-II) therapeutic window with an increased tissue penetration and elevated maximal permissible exposure has attracted considerable attention in antibacterial applications. However, the lack of bacterial-targeted photothermal agents limits their further development. Herein, we developed three xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm. Their bulky planar conformations facilitated the formation of H-aggregates with outstanding photothermal conversion ability and good photostability in the NIR-II therapeutic bio window. By manipulating side chains of CNs, their liposomes exhibited different surface charges, ranging from negative to positive. Remarkably, the intermolecular hydrogen bonding of CN3 dimer drived the positively charged xanthene skeleton exposed to the periphery, which endowed it natural bacterial targeting potency. Therefore, CN3 possessed a good NIR-II photothermal and broad-spectrum sterilization against Gram-positive and Gram-negative bacteria. The photothermal antibacterial activities for S. aureus and E. coli were 99.4% and 99.2%, respectively, promoting significant wound healing in bacteria-infected mice with superior biocompatibility. This structure-inherent bacterial targeting strategy as a proof-of-concept shows an efficient broad-spectrum bacterial inactivation, indicating more encouraging NIR-II photothermal antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT) in the second near-infrared region (NIR-II, 1000-1700 nm) enables the treatment of deep inflammation more satisfactory due to higher tissue penetration depth. In this work, three new NIR-II xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm were developed. CNs showed typical H-aggregated performance with bulky planar conformations and outstanding photothermal conversion ability. Density functional theory calculations revealed that the intermolecular hydrogen bonding of CN3 dimer drived the exposure of positively charged xanthene skeleton to periphery of dimer. Therefore, CN3 NPs possessed natural bacterial targeting potency and excellent NIR-II photothermal and broad-spectrum sterilization, and so as to significantly promote the wound healing of Gram-positive / negative bacteria infected mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.01.031DOI Listing

Publication Analysis

Top Keywords

bacterial targeting
16
photothermal broad-spectrum
12
broad-spectrum sterilization
12
nir-ii photothermal
12
photothermal
10
nir-ii
8
nir-ii xanthene
8
structure-inherent bacterial
8
antibacterial therapy
8
photothermal therapy
8

Similar Publications

Mechanisms and implications of antibiotic resistance in gram-positive bacterial strains.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Antibiotics play a fundamental role in protecting millions of lives from infectious diseases. However, an important drawback of antibiotic treatment is that each advancement was followed by the development of resistance. This is due to the fact that the majority of pathogenic bacteria are capable of becoming resistant to a number of antimicrobial agents.

View Article and Find Full Text PDF

[Research advances in the mechanism of Toll-like receptor 4 mediated intestinal injury and inflammatory response in necrotizing enterocolitis].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China. *Corresponding author, E-mail:

Necrotizing enterocolitis (NEC) is an intestinal inflammatory and necrotic disease seen in premature infants, and remains the leading cause of death resulted from gastrointestinal diseases in premature infants. The specific pathogenesis of NEC is still unclear. In recent years, a lot of studies have reported that Toll-like receptor 4 (TLR4) plays a key role in the pathogenesis of NEC.

View Article and Find Full Text PDF

Background: Snow mold caused by different psychrophilic phytopathogenic fungi is a devastating disease of winter cereals. The variability of the snow mold pathocomplex (the quantitative composition of snow mold fungi) has not been evaluated across different crops or different agrocenoses, and no microbial taxa have been predicted at the whole-microbiome level as potential effective snow mold control agents. Our study aimed to assess the variability of the snow mold pathocomplex in different winter cereal crops (rye, wheat, and triticale) in different agrocenoses following the peak disease progression and to arrange a hierarchical list of microbial taxa predicted to be the main candidates to prevent or, conversely, stimulate the development of snow mold pathogens.

View Article and Find Full Text PDF

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

Recent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!