Stimulus and location specificity are long considered hallmarks of visual perceptual learning. This renders visual perceptual learning distinct from other forms of learning, where generalization can be more easily attained, and therefore unsuitable for practical applications, where generalization is key. Based on the hypotheses derived from the structure of the visual system, we test here whether stimulus variability can unlock generalization in perceptual learning. We train subjects in orientation discrimination, while we vary the amount of variability in a task-irrelevant feature, spatial frequency. We find that, independently of task difficulty, this manipulation enables generalization of learning to new stimuli and locations, while not negatively affecting the overall amount of learning on the task. We then use deep neural networks to investigate how variability unlocks generalization. We find that networks develop invariance to the task-irrelevant feature when trained with variable inputs. The degree of learned invariance strongly predicts generalization. A reliance on invariant representations can explain variability-induced generalization in visual perceptual learning. This suggests new targets for understanding the neural basis of perceptual learning in the higher-order visual cortex and presents an easy-to-implement modification of common training paradigms that may benefit practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2023.01.011 | DOI Listing |
Sci Rep
January 2025
School of Computer Science and Technology, Donghua University, Shanghai, 201620, China.
Extracting high-order abstract patterns from complex high-dimensional data forms the foundation of human cognitive abilities. Abstract visual reasoning involves identifying abstract patterns embedded within composite images, considered a core competency of machine intelligence. Traditional neuro-symbolic methods often infer unknown objects through data fitting, without fully exploring the abstract patterns within composite images and the sequential sensitivity of visual sequences.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Plastic, Craniofacial and Hand Surgery, Sidra Medicine, and Weill Cornell Medical College, C1-121, Al Gharrafa St, Ar Rayyan, Doha, Qatar.
Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken.
View Article and Find Full Text PDFNeural Netw
January 2025
Image Processing Lab., Universitat de València, 46980 Paterna, Spain. Electronic address:
There is an open debate on the role of artificial networks to understand the visual brain. Internal representations of images in artificial networks develop human-like properties. In particular, evaluating distortions using differences between internal features is correlated to human perception of distortion.
View Article and Find Full Text PDFiScience
January 2025
Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
Recent studies showed that humans, regardless of age, education, and culture, can extract the linear trend of a noisy scatterplot. Although this capacity looks sophisticated, it may simply reflect the extraction of the principal trend of the graph, as if the cloud of dots was processed as an oriented object. To test this idea, we trained Guinea baboons to associate arbitrary shapes with the increasing or decreasing trends of noiseless and noisy scatterplots, while varying the number of points, the noise level, and the regression slope.
View Article and Find Full Text PDFDigit Health
January 2025
Independent Researcher, Calgary, Alberta, Canada.
Digital health (DH) and artificial intelligence (AI) in healthcare are rapidly evolving but were addressed synonymously by many healthcare authorities and practitioners. A deep understanding and clarification of these concepts are fundamental and a prerequisite for developing robust frameworks and practical guidelines to ensure the safety, efficacy, and effectiveness of DH solutions and AI-embedded technologies. Categorizing DH into technologies (DHTs) and services (DHSs) enables regulatory, HTA, and reimbursement bodies to develop category-specific frameworks and guidelines for evaluating these solutions effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!