AI Article Synopsis

  • - The study focuses on the non-climacteric octoploid strawberry (Fragaria × ananassa) to investigate how various phytohormones regulate fruit ripening, using advanced techniques like HPLC-ESI-MS/MS to profile 28 different hormones.
  • - Key findings indicate that hormones like abscisic acid (ABA), the ethylene precursor ACC, and cytokinins are crucial during the ripening process, with specific metabolic pathways identified as significant in the transition and progression of ripening.
  • - The research also discovered a previously unknown group of ACC synthase (ACS) genes in strawberries, with several showing increased expression during ripening, highlighting the intricate role of phytohormones in

Article Abstract

The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N-(Δ-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N-(Δ-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N-(Δ-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.01.031DOI Listing

Publication Analysis

Top Keywords

fruit ripening
20
octoploid strawberry
16
endogenous phytohormones
12
strawberry fruit
12
ripening
9
strawberry
9
acid
8
1-aminocyclopropane-1-carboxylic acid
8
gene family
8
fruit
8

Similar Publications

The firmness of the two apple varieties: Idared and Pinova was similar during ripening, while it decreased significantly during 3-month storage only for Idared. Pectin-rich fractions were isolated from apple flesh tissue: water-soluble pectin (WSP), imidazole-soluble pectin (ISP), and hemicellulose-rich fractions: natively acetylated hemicelluloses (LiCl-DMSO), deacetylated hemicelluloses (KOH). It was shown that the degree of acetylation (DAc) of the hemicelluloses fraction (LiCl-DMSO) increased during apple ripening and storage, with higher values for Idared.

View Article and Find Full Text PDF

The phytochemical fingerprinting that add to the nutritional and nutraceutical value of the fruits during the ripening stages is beneficial for human consumption. Therefore, ripening-dependent changes in phytochemical content and antioxidant activities of mango (Mangifera indica L.) cultivar Dusehri at various ripening stages were evaluated.

View Article and Find Full Text PDF

A nuclear-localized cysteine desulfhydrase, LCD1, plays a crucial role in mediating endogenous hydrogen sulfide production in tomatoes. However, the mechanism underlying the nuclear localization of SlLCD1 is not yet fully understood. In this study, it was found that SlLCD1 specifically interacted with nuclear import receptor importin α3 (SlIMPA3).

View Article and Find Full Text PDF

Mechanism of abscisic acid in promoting softening of postharvest 'Docteur Jules Guyot' pear ( L.).

Front Plant Sci

December 2024

The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China.

Abscisic acid (ABA) is a key hormone in plant growth and development, playing a central role in responses to various biotic and abiotic stresses as well as in fruit ripening. The present study examined the impact of ABA and nordihydroguaiaretic acid (NDGA) on various postharvest 'Docteur Jules Guyot' pear fruit characteristics, including firmness, pectinase activity, pectin content, volatile aromatic substances, and the expression of correlated genes. The results showed that ABA quickly reduced fruit firmness, increasing the activity of pectin degradation-related enzymes.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!