Chromatin-modifying enzymes are commonly altered in cancers, but the molecular mechanism by which they regulate cancers remains poorly understood. Herein, we demonstrated that Lysine acetyltransferase 7 (KAT7) was upregulated in breast cancer. KAT7 expression negatively correlated with the survival of breast cancer patients, and KAT7 silencing suppressed breast cancer radioresistance in vitro. Mechanistically, KAT7 activated Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) transcription, leading to enhanced PI3K/AKT signaling and radioresistance. Overexpression of AKT or PIK3CA restored radioresistance suppression induced by KAT7 inhibition. Moreover, overexpression of KAT7, but not KAT7 acetyltransferase activity-deficient mutants promoted AKT phosphorylation at the Ser473 site, PIK3CA expression and radioresistance suppression due to KAT7 inhibition. In conclusion, KAT7 has huge prospects for clinical application as a new target for predicting radioresistance in breast cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036104PMC
http://dx.doi.org/10.1093/jrr/rrac107DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
kat7
10
pi3k/akt signaling
8
cancer patients
8
radioresistance suppression
8
kat7 inhibition
8
radioresistance
6
breast
5
cancer
5
kat7 promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!