We investigated the suitability of the graphitic carbon (GC) content of diesel particulate matter (DPM), measured using Raman spectroscopy, as a surrogate measure of elemental carbon (EC) determined by thermal optical analysis. The Raman spectra in the range of 800-1800 cm (including the D mode at ∼1322 cm and the G mode at ∼1595 cm) were used for GC identification and quantification. Comparison of the Raman spectra for two certified DPM standards (NIST SRM 1650 and SRM 2975), two types of diesel engine exhaust soot, and three types of DPM-enriched workplace aerosols show that the uncertainty of GC quantification based on the D peak height, G peak height, and the total peak area below D and G peaks was about 6.0, 6.7, and 6.9%, respectively. The low uncertainty for different aerosol types suggested possible use of GC as a surrogate measure of EC in workplace atmospheres. A calibration curve was constructed using two laboratory-aerosolized DPM standards to describe the relationship between GC measured by a portable Raman spectrometer and the EC concentration determined by NIOSH Method 5040. The calibration curve was then applied to determine GC-based estimates of the EC contents of diesel engine exhaust samples from two vehicles and seven air samples collected at a hydraulic fracturing worksite. The GC-EC estimates obtained through Raman measurements agreed well with those found by NIOSH Method 5040 for the same samples at EC filter loadings below 2.86 μg/cm. The study shows that using an appropriate sample collection method that avoids high filter mass loadings, onsite measurement of GC by a portable or hand-held Raman spectrometer can provide a useful indicator of EC in workplace aerosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245227PMC
http://dx.doi.org/10.1021/acs.analchem.2c04261DOI Listing

Publication Analysis

Top Keywords

graphitic carbon
8
elemental carbon
8
diesel particulate
8
particulate matter
8
workplace atmospheres
8
surrogate measure
8
raman spectra
8
dpm standards
8
diesel engine
8
engine exhaust
8

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.

View Article and Find Full Text PDF

Carbon Black Absorption Enhanced Fiber-Optic Photoacoustic Gas Sensing System with Ultrahigh Sensitivity.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!