HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202201738R | DOI Listing |
Subcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Understanding the dynamic processes involving virus structural components within host cells is crucial for comprehending viral infection, as viruses rely entirely on host cells for replication. Viral infection involves various intracellular stages, including cell entry, genome uncoating, replication, transcription and translation, assembly of new virus particles in a complex morphogenetic process, and the release of new virions from the host cell. These events are dynamic and scarce and can be obscured by other cellular processes, necessitating novel approaches for their in situ characterization.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Structure and Cell Biology of Viruses Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain.
A virus particle must work as a strongroom to protect its genome, but at the same time it must undergo dramatic conformational changes to infect the cell in order to replicate and assemble progeny. Thus, viruses are miniaturized wonders whose structural complexity requires investigation by a combination of different techniques that can tackle both static and dynamic processes. In this chapter, we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy can be combined with other techniques to determine the structure of complex viruses.
View Article and Find Full Text PDFJ Virol
December 2024
Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria.
Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.
View Article and Find Full Text PDFJ Biol Chem
December 2024
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China. Electronic address:
Serine incorporator 5 (SER5) can be incorporated into HIV-1 virions to block viral entry by disrupting the envelope glycoprotein-mediated viral fusion to the plasma membrane. Recent studies suggest that SER5 also inhibits HIV-1 mRNA transcription and the subsequent progeny virion biogenesis. However, the underlying mechanisms through which SER5 antagonizes the viral transcription remain poorly understood.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Infection by human astrovirus (HAstV), a small, positive-strand RNA virus, is a major cause of gastroenteritis and has been implicated in an increasing number of severe, sometimes fatal, neurological diseases since 2008. Currently, there are no vaccines or antiviral treatments available to treat HAstV infection. An attractive target for antiviral therapeutics is the viral protease due to its essential functions throughout infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!