We demonstrate the first multi-segmented Nd:YLF laser, to the best of our knowledge. The multi-segmented crystal was designed to straightforwardly aim for the minimum thermal stress without sacrificing the overall laser efficiency, with the influence of the pump beam waist position considered in particular. Integrating the enhanced thermo-mechanical resistance of multi-segmented crystal and the alleviated heat load of low quantum defect pumping, this end-pumped 1314 nm Nd:YLF laser system delivered a maximum continuous-wave output power of up to 35.5 W under a pump power of 105 W, corresponding to an optical-to-optical efficiency of 33.8%. Furthermore, by incorporating an acousto-optic modulator, an active Q-switching oscillator was accomplished, yielding a maximum average output power of 22.9 W at a pulse repetition frequency (PRF) of 20 kHz and a largest pulse energy of 13.6 mJ at a PRF of 1 kHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.482169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!