This paper presents a novel, to the best of our knowledge, method for realizing soliton transformation between different potential wells by gradually manipulating their depths in the propagation direction. The only requirements for such a transformation are that the gradient of the manipulated depth is smooth enough and the solitons in different potential wells are both in the regions of stability. The comparison of transformed solitons with the iterative ones obtained by the accelerated imaginary-time evolution method proves that our method is efficient and reliable. An interesting consequence is that in some complex potential wells in which it is difficult to find solitons by iterative numerical methods, stable solitons can be obtained by the transformation method. The controllable soliton transformation provides an excellent opportunity for all-optical switching, optical information processing, and other applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.481216DOI Listing

Publication Analysis

Top Keywords

potential wells
16
soliton transformation
12
transformation potential
8
solitons iterative
8
potential
4
wells
4
wells paper
4
paper presents
4
presents novel
4
novel best
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!