Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Time-resolved terahertz (THz) spectroscopy has been shown as a powerful technique to non-invasively determine the charge carrier properties in photoexcited semiconductors. However, the long wavelengths of terahertz radiation reduce the applicability of this technique to large samples. Using THz near-field microscopy, we show THz measurements of the lifetime of 2D single exfoliated microcrystals of transition metal dichalcogenides (WS). The increased spatial resolution of THz near-field microscopy allows spatial mapping of the evolution of the carrier lifetime, revealing Auger assisted surface defect recombination as the dominant recombination channel. THz near-field microscopy allows for the non-invasive and high-resolution investigation of material properties of 2D semiconductors relevant for nanoelectronic and optoelectronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.477389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!