Fraunhofer diffraction is an easy but powerful method for measuring the diameter of a thin filament. In practice, however, the diffraction pattern attainable is always subject to limits imposed by various imperfections in real systems, such as small angle approximation and sensor threshold, thus degrading the measurement resolution. In this Letter, we propose a method of fringe segment splicing for improving the diameter measurement from Fraunhofer diffraction. The fringe segment is chosen from a real diffraction pattern and is used to reproduce an ideal diffraction fringe, where the theoretical estimates give the best approximation to the observations. The problem of diameter measurement is solved in the spatial frequency-domain with an ideal diffraction fringe. Our results show that the relative error in this method is less than 0.1% and is far superior to that of previous methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.476848 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Institute for Advanced Study, School for Natural Sciences, Princeton, New Jersey 08540, USA; Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA; Institute for Theory and Computation, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA; and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
RSC Adv
November 2024
King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia.
Nanocomposites (NCs) have attractive potential applications in gas-sensing, energy, photocatalysis, and biomedicine. In the present work, the fabrication of CuO/ZrO/TiO/RGO nanocomposites (NCs) was done a simple chemical route. Our aim in this work was to synthesis and investigate the selective anticancer activity of TiO NPs by supporting CuO, ZrO, and RGO toward cancer and normal cells.
View Article and Find Full Text PDFSci Rep
November 2024
Microworks GmbH, Schnetzlerstr. 9, Karlsruhe, 76137, Germany.
X-ray grating interferometry allows for the simultaneous acquisition of attenuation, differential-phase contrast, and dark-field images, resulting from X-ray attenuation, refraction, and small-angle scattering, respectively. The modulated phase grating (MPG) interferometer is a recently developed grating interferometry system capable of generating a directly resolvable interference pattern using a relatively large period grating envelope function that is sampled at a pitch that is small enough that X-ray spatial coherence can be achieved by using a microfocus X-ray source or G0 grating. We present the theory of the MPG interferometry system for a 2-dimensional staggered grating, derived using Fourier optics, and we compare the theoretical predictions with experiments we have performed with a microfocus X-ray system at Pennington Biomedical Research Center, LSU.
View Article and Find Full Text PDFDiscov Nano
November 2024
Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India.
Malnutrition is one of the greatest challenges faced by humanity, which may be addressed by improving crop productivity to ensure food security. However, extensive use of synthetic fertilizers can lead to soil fertility degradation. This study highlights the potential of combining nanotechnology with biotechnology to enhance the germination rates of commercially important crop seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!