The development of a 100% sustainable tire has emerged as a milestone for several tire companies across the globe. It has created new commercial opportunities for the biobased, renewable, and recycled polymer materials. However, there are concerns that the incorporation of such sustainable new materials may have an undesirable impact on the main performance properties of the tire. At the same time, with new capabilities and product innovations, it can help us meet society's need in a more sustainable fashion and protect the environment. This Feature first outlines the opportunities and need for sustainable tire materials. Next, it describes the main types of sustainable material attributes in tire material, elastomers, reinforcing agents, fibers, and plasticizers, among a few others. The challenges to achieving the performance properties are discussed with possible design guidelines. Recent approaches to the tire attributes are described in the form of a meticulous overview of the existing literature, with a critical analysis of some of them. This contribution attempts to highlight, in a comprehensive way, sustainable tire materials on the basis of recent research advancements, existing challenges, and prospective future scope in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c07642 | DOI Listing |
Environ Sci Technol
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil.
View Article and Find Full Text PDFEnviron Pollut
December 2024
REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernandino de Almeida 431, 4249-015, Porto, Portugal; Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal. Electronic address:
In recent years, microplastic (MP) pollution has garnered significant attention owing to its ability to permeate various ecosystems, including soil. These particles can infiltrate the environment, either directly or through the degradation of larger plastic items. Despite growing concerns, standardized methods for quantification are still lacking.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Metallurgical and Materials Engineering, Ondokuz Mayıs University, 55200, Samsun, Turkey.
Road-associated microplastics, originating from tire wear and fragmented litter, are significant contributors to microplastic pollution. This study examines the characteristics of these particles within a university, focusing on their size, shape, color, and polymer composition. Suspended microplastics were collected using portable active samplers for PM and results have shown that PM concentrations peaked on Thursdays and declined, reaching their lowest levels on Sundays, with overall weekend measurements indicating reduced concentrations compared to weekdays.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Institute of Transportation, Faculty of Civil and Environmental Engineering, TU Wien, Karlsplatz 13/E230, 1040 Vienna, Austria.
Researchers are increasingly concerned about the vast amounts of waste rubber tires produced globally, which contribute significantly to environmental pollution. The potential of incorporating waste rubber tires to modify bitumen has garnered considerable interest. This study assesses pavement design temperatures according to SUPERPAVE standards for representative Malaysian regions.
View Article and Find Full Text PDFWaste Manag
December 2024
Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Qingdao Automotive Research Institute, Jilin University, Qingdao 266042, PR China. Electronic address:
The world's three leading tire manufacturers have proposed specific timelines for using recycled materials. For instance, Michelin targets an increase in the proportion of sustainable materials in tires to 40 % by 2030 and aims to produce 100 % of its tires from bio-based, renewable, or recyclable materials as of 2050. In such a context, this study introduced wet mixing technology to apply recycled rubber (RR) in highly wear-resistant tire tread compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!