Deep Learning Using Electrocardiograms in Patients on Maintenance Dialysis.

Adv Kidney Dis Health

Nephology Division, Department of Medicine, New York University Grossman School of Medicine, New York, NY. Electronic address:

Published: January 2023

Cardiovascular morbidity and mortality occur with an extraordinarily high incidence in the hemodialysis-dependent end-stage kidney disease population. There is a clear need to improve identification of those individuals at the highest risk of cardiovascular complications in order to better target them for preventative therapies. Twelve-lead electrocardiograms are ubiquitous and use inexpensive technology that can be administered with minimal inconvenience to patients and at a minimal burden to care providers. The embedded waveforms encode significant information on the cardiovascular structure and function that might be unlocked and used to identify at-risk individuals with the use of artificial intelligence techniques like deep learning. In this review, we discuss the experience with deep learning-based analysis of electrocardiograms to identify cardiovascular abnormalities or risk and the potential to extend this to the setting of dialysis-dependent end-stage kidney disease.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.akdh.2022.11.009DOI Listing

Publication Analysis

Top Keywords

deep learning
8
end-stage kidney
8
kidney disease
8
learning electrocardiograms
4
electrocardiograms patients
4
patients maintenance
4
maintenance dialysis
4
cardiovascular
4
dialysis cardiovascular
4
cardiovascular morbidity
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Objective: The extent of resection (EOR) and postoperative residual tumor (RT) volume are prognostic factors in glioblastoma. Calculations of EOR and RT rely on accurate tumor segmentations. Raidionics is an open-access software that enables automatic segmentation of preoperative and early postoperative glioblastoma using pretrained deep learning models.

View Article and Find Full Text PDF

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!